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ABSTRACT 

A general  incremental  variational  method  for  the  analysis  of  geo- 

metrically  and  physically  non-linear  problems  in  continuum  mechanics  is 

developed.  This  variational  method  is  applicable to any  type  of  material 

properties.  In  particular,  non-linear  constitutive lam for  elastic, 

and  elastic-plastic  materials  are  considered.  Starting  from  the  basic 

principles  in  continuum  mechanics,  such  as  the  invariance  requirements 

and  the  thermodynamic  laws,  general  incremental  constitutive  equations 

have  been  derived  for  non-linear  elastic  materials.  For  the  elastic- 

plastic  materials  an  incremental  constitutive 1aw.i~ considered  where 

deformations  are  infinitesimal  but  rotations  are  finite. 

The  method  has  been  specialized  and  applied  to  the  analysis  of 

large  deflections  of  elastic-plastic  axisymmetrically  deformed  shells 

of  revolution.  The  displacement  formulation  of  the  finite  element 

method  has  been  exploited  for  this  problem  and a digital  computer 

program  is  written  for  the  numerical  analysis.  Several  examples  of 

circular  plate,  shallow  shell,  and  thin  axisymmetric  shells  of  arbi- 

trary  meridional form are  presented to illustrate  the  convergence  and 

accuracy  of  the.method. 
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NOMENCLATURE 

A list  of  all  important  symbols  in  the  text  is  compiled  here.  The 

symbols  which  are  introduced  in  some  sections  of  the  text  but  which  are  not 

referred  to  later  are  not  included.  Some  of  the  symbols  may  have  two  mean- 

ings  in  different  sections;  these  are  clearly  defined  and  should  not  confuse 

the  reader.  For  the  symbols  which  have  either  lengthy  definitions  or  no 

particular  name  the  reader  is  referred to the  place in the  text  where  they 

were  first  introduced. 

A tensor  component  with  an  asterisk (*) superscript  denotes a 

physical  component.  Repeated  indices  indicate  summation  over  the  range  of 

the  indices  unless  otherwise  stated.  Latin  indices  range  from 1 - 3 ,  and 

Greek  indices  from 1 - 2. 

surface  area  in  the  initial,  first  and  second  configurations, 
respectively 

increment  of  free  energy  function 

free  energy  function  of  configurations 1 and 2,  respectively 

in  plane  base  vectors  of  the  middle  surface  of  the  shell  in 
configurations 1 and 2,  respectively 

unit  vector  normal to the  middle  surface  of  the  shell  in  con- 
figurations 1 and 2,  respectively 

covariant  and  contravariant  components  of  the  middle  surface 
metric  tensor  in  configuration 1 

as  defined  in  (11.51) 

the  second  tnvariant  form  of  the  middle  surface  of  the  shell 
in  configuration 1 

curvature  tensor  of  the  middle  surface  of  the  shell  in  con- 
.figuration 1 
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Green’s  deformation  tensor  between  configurations 1 and 2 

Green‘s  deformation  tensors  at  configurations 1 and 2, respectively 

elastic-plastic  moduli  tensor 

physical  components of elastic-plastic  moduli  tensor,  defined  in 
(11.77) 

elastic-plastic  moduli  tensor  for  generalized  plane  stress,  see 
(111.28) 

Young’s  modulus 

tangent  modulus 

linear  part  of  the  meridional  strain  of  the  middle  surface  of  the 
shell 

linear  part  of  the  circumferential  strain  of  the  middle  surface of 
the  shell 

linear  part of Lagrange  strain  tensor  from  configuration 1 to 2 

linear  part  of  the  Lagrange  strain  tensor  in  configurations 1 
and -2 , respectively 

hardening  .function  defined  in (11.42) 

yield  function 

increment  of  body  force  per  unit  mass 

plastic  potential 

base  vectors  in  the  initial,  first,  and  second  configurations., 
respectively 

gij  ,gij Y GAB metric  tensors  in  the  initial,  first,  and  second  configurations, 
respectively 

h  thickness  of  the  shell 

H hardening  function  defined  in (11.43) 

-j 
i  unit  base  vectors 

J ~ Y J ~ Y J ~  invariants  of  the  deviatoric  stress  tensor 

R cord  length  of  an  element 
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Ms 2 M e  
increment  of  the  meridional  and  circumferential  bending  moments 
measured  per  unit  length  of  the  middle  surface  of  the  shell  in 
configuration 1 

meridional  and  circumferential  bending  moments  per  unit  length 
Jf  the  middle  surface  of  the  shell  in  configuration 1 

increment  of  the  meridional  and  circumferential  in  plane  forces 
per  unit  length  of  the  middle  surface  of  the  shell  in  configura- 
tion 1 

meridional  and  circumferential  in  plane  forces  per  unit  length 
of  the  middle  surface  of  the  shell  in  configuration 1 

- 
n n  i' iyNA direction  cosines of the  outward  normal to the  boundary  surfaces 

in  the  initial,  first  and  second  configurations 

meridional  and  normal  force  increments  measured  per  unit  area  of 
the  middle  surface  of  the  shell  in  configuration 1 

increment  of  shear  force  per  unit  area  of  the  middle  surface  of 
the  shell  in  configuration 1 QS 

radial  coordinate  as  shown  in  Figure 111.1 1: 

lr , 2r rate  of  heat  production  per  unit  mass  in  configurations 1 and 2, 
respectively 

meridional  and  circumferential  principal  radii  of  curvature  of 
the  shell  in  configuration 1 

arc  length S 

1 2  s, s entropy  per  unit  mass  in  configurations 1 and 2 

increments  of  Eiola  symmetric  stress  tensor  measured  per  unit of 
area  a  and a, respectively 

2s 2: ij' ij Piola  symmetric  stress  tensor  in  configuration 2 measured  per  unit 
of  area  a  and a, respectively 

increments  of  surface  traction  measured  per  unit of area  a  and 
a, respectively - 

surface  tractions  in  configuration 1 measured  per  unit  of  area  a 
and X, respectively 

2 2- 
ti' ti surface  tractions  in  configuration 2 measured  per  unit  of  area  a 

and Z, respectively 

meridional  displacement  increment  of  the  middle  surface  of  the 
shell,  see  Figure 111.2 
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increment  of  the  displacement  vector of a  generic  point  in  the 
shell  space 

increments  of  displacements  of  the  middle  surface  of  the  shell, 
see  Figure  IV.l 

increments  of  the  displacements  in  terms  of  the  coordinates  of 
the  initial  and  first  configurations,  respectively 

displacements  between  the  initial  state  and  the  first  configura- 
tion  in  terms  of  the  coordinates  of  configuration 1 and  initial 
state,  respectively 

displacements  between  the  initial  state  and  the  second  configura- 
tion  in  terms  of  the  coordinates  of  configuration  2  and  initial 
state,  respectively. 

volumes  of  the  initial,  first,  and  second  configurations, 
respectively 

normal  displacement  increment  of  the  middle  surface  of  the  shell, 
see  Figure  111.2 

plastic  work 

virtual  work 

- xij  ,xij ~ .- . 1 .  ~. 
r ., . . . .  -I . . r .  . .  curvulnear  cooramaces or cne  lnlclal  scace,  ana  conrlguraclons 

1 and 2, respectively 

Cartesian  coordinates  of  the  initial  state,  and  configurations 1 
and 2, respectively 

generalized  coordinates 

angle  shown  in  Figure IV.l 

Christoffel  symbols 

virtual  variation 

Kronecker  delta 

Lagrange  strain  tensor  between  configurations 1 and  2 

Lagrange  strain  tensors  at  configurations 1 and  2 

elastic  and  plastic  parts of Lagrange  stxain  tensor  between 
Configurations 1 and  2 

elastic  and  plastic  parts  of  Lagrange  strain  tensor  in  configu- 
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physical  components  of the  meridfonal  and- Circumferential 
Lagrangian  s t ra in   of   the   shel l   between  configurat ions 1 
and 2 

physical  components  of the  meridional   and  c i rcumferent ia l  
Lagrangian  s t ra in   of   the   middle   surface  of   the  shel l   between 
configurat ions 1 and 2 

e q u i v a l e n t   p l a s t i c   s t r a i n ,  see (11.4\1) 

r a t i o  of  tangent modulus t o  elastic modulus,   also  coordinate 
a long   t he   t h i ckness   o f   t he   she l l  

loca l   coord ina te   for   an   e lement  as i n  Chapter IV ,  see Figure I V . l  II 

non-linear  part  of  Lagrange strain tensor  between  configurations 
1 and 2 

e circumferent ia l   coordinate  of t h e   s h e l l ,  see Figure 111.1; a l s o  
temperature as i n  Chapter I 

hardening  parameter K 

change  of  the  meridional  and  circumferential  curvatures  of  the 
middle  surface of t h e   s h e l l  between  configurations 1 and 2 
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t enso r ,  see (E.5) 

s p a c e   s h i f t e r   t e n s o r ,  see (E.3)  

Poi s son‘ s   r a t io  v 

E loca l   coord ina te   for   an   e lement ,  see Figure I V . l  
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INTRODUCTION 

The Consideration  of  geometrical  and/or material n o n l i n e a r i t i e s  

i n   t h e   a n a l y s i s   o f  many s t r u c t u r e s  is qui te   impor tan t   for   var ious   reasons ,  

e n g o p   f o r   t h e   p r e c i s i o n  demanded in .   the   p red ic t ion   of   the   ac tua l   behavior  

of  such  structures  under severe environmental   and  loading  conditions  and 

also  for   economical   considerat ions,  A s  an example,   consider   thin  shel ls  

o f  revolut ion,  The buckl ing  behavior   of   these  s t ructures  is  e s s e n t i a l l y  

of  nonlinear  character and the   p red ic t ion   o f   t he i r   pos t   buck lhg   cha rac -  

teristics w€thout  such  consideration is  not  possfble,  Even under  pre- 

buckl ing  condi t ions  the  analysis   of   the   behavior   of  some s h e l l s  of 

revolu t ion   l ike  a membrane t o r u s   o r  a thin  shal low  cap  inevi tably  requires  

nonl inear   ana lys i s ,   Also ,   the   necess i ty   for   u t i l i z ing   engineer ing  materials 

more e f f f c i e n t l y  and  economically i n  such areas as aerospace  industry re- 

qu i r e s   t he   i nco rpora t ion   o f   phys i ca l   and   geomet r i ca l   non l inea r f t i e s   i n   t he  

ana lys i s   o f   she l l   t ype   s t ruc tu res .  

There are no general  methods  of s o l u t i o n  of nonlinear  boundary 

value  problems i n  engineering. Only a few very  simple  nonlinear  problems 

can be   so lved   by   exac t   ana ly t ica l  methods  [1,2], Even t h e  classical  approx- 

imate solut ions  such as asymptotic  expansions  and  weighted  residual  methods 

can  be  appl ied  to   re la t ively  s imple  problems  [1 ,2 ,3]  and r e s o r t  must b e  

made to   numerfcal   procedures   of   analysis ,   In   the  past  two decades  the 

advent  of  high-speed  digital  computers has  renewed t h e   e f f o r t s  at recon- 

s fder ing  ant extending some classical   approximate methods such as weighted 

res idua l   and   Rf tz  method,  numerical f in i te   d i f fe rence   t echniques ,   and   the  

development  of new concep t s   l i ke   i nva r i an t  imbedding  and other  numerical  

procedureso 
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The f i n i t e   d i f f e r e n c e  method has  been  stndied  rather well mathe- 

mat ica l ly  [145], The d i f f i cu l ty   w i th   t he   app l i ca t ion  of this   numerical  

technique  fn   the problems of continuum  mechanics is  t h a t  i t  is not  s u i t -  

a b l e  t o  express some boundary  conditions  easily  and  cannot accommodate 

qui te   i r regular   changes  af   geometr ical   and  mater ia l   propert ies .  

Inva r i an t  imbedding i E  the transformation  of  the boundary value 

problem i n t o   a n   i n i t i a l   v a l u e  problem  by  introducing new v a r i a b l e s  and 

parameters 14,1461. This   approach,   together   with  the  quasi l fnear izat ion 

technique,  which is an  extension  of Newton-Raphsor method fo r   func t iona l  

analysis:   can  be  formula.ted  into a predictor   corrector   formula which may 

p rove   u se fu l   i n   t he   so lu t ion  of some nonlinear  boundary value problems i n  

mechanics  of  solids. The disadvantage  of   this  method i s  t h a t   i n s t e a d  of 

one  original  problem a family of problems  must  be  solved,  resulting ir 

more computa t iona l   e f for t ,   In   cer ta in   p roblems  the   addi t iona l   ca lcu la-  

t ions   p rovide  sora6 extra   informations which are d e s i r a b l e   t o  know, 

Another  discrete  approximation  to  the  boundary  value  problems 

is t h e   f i n i t e  element method [5,6], which i f  a r   extension  of   the classi- 

cal Ri tz  method for the   so lu t ion   of   var ia t iona l   p roblems.  I n  t h e   f i n i t e  

element method t h e  domain of the  prablem is d f sc re t i zed   i n to  a number of 

d i s j o i n t  subdomains cal led  e lements ,  a set o f  points   of  which {usually on 

the  boundary) are cal led  nodes.  Then. the   in tegrand   of   the   func t iona l  

i n t e g r a l  is approximated  by a set of assumed funct ions which are expressed 

i n  terms of the   va lues   J f   t he   i n t eg rand   func t ions  a t  the  nodes by s u i t a b l e  

interpols+ion  formulas   sat isfying  the  cont inui ty   condftfoi1s   a t   the   nodes,  

In   the  problems of  continuum  mechanics t h e   f i n i t e  element method 

is e a s i l y   a d a p t a b l e   t o  matrix formulation  which can be   readi ly   used   for  

t he   ana lys i s  by  computers. The method is capable of approximating  quite 

2 



irregular  boundary  shapes  and  compl$cated  boundary  conditions,  and  can 

handle   a rb i t ra ry   var ia t ions   o f   the  physical. an4 geometrical   parameters i n  

t h e  domain of t h e  problem. 

The above  three methods  can  be  used wit1 an i terative and/or 

incrementa l   in tegra t ion  scheme, The choice or’ e i t h e r  one of these  depends,  

among o t h e r   f a c t o r s ,   o n   t h e   p h y s i c a l   c h a r a c t e r i s t i c s  of t h e  problem,  For 

example, f o r  a non-conservative  system  l ike a continuum w i t h - t h e  incremen- 

t a l  c o n s t i t u t i v e  law of plast ic i ty   an  incremental   procedure  should  be 

adopted, The combination  of  the  f inite  element method with  an  incrementa3 

forward  integration  procedure on some v a r i a b l e  of the  problem is q u i t e  

su i t ab le   fo r   t he   ana lys t s   o f  many problems  on d i g i t a l  computers. 

The purpose  of  the  present work is to   develop  an  incremental  

v a r i a t i o n a l  method of analyEis  for  the  proklems i n  continuum  mechanics 

considering  both  the  geometrical  and phys ica l   non l fnea r i t i e s ,  and t o  

apply  the method fo r   t he   l a rge   d i sp l acemen t   ana lys i s   o f   e l a s t i c -p l a s t f c  

she l l s   o f   revolu t ion   us ing   the   d i sp laeement   formula t ion   of   the   f fnf te  

element method, 

Several forms  of  the  ineremen.taf  variational  expressions of t h e  

equilibriurr of t h e  continuum are considered i n  Chapter I and  Appendix C, 

From  among these  one  expression  which is  based  on a moving. re ference  con- 

f igura t ion  i s  chosen  and  used i n  subsequent  developments, The fact t h a t  

such a var fa t fona l   express ion   leads  t o  correct   incremental   equat ions of 

equilibrium and  boundary  conditions is shown i n  Appendix A, Also, i n  

t h i s   c h a p t e r ,   a f t e r  a preliminary  review of t h e  laws of  thermodynamics 

and   invar iance   p r inc ip le   for   energy ,   the   incrementa l   nonl inear   cons t i tu -  

t i ve   equa t ions   o f   e l a s t i c i ty  are derived,  For  sSmplicSty of understand- 

ing  of t h e   b a s i c   i d e a ,  a l l  of   the   p resenta t ions   in   Chapters  I and I1 are 

In   Car tes ian   coord ina tes ,  
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In Chapter I1 the  incremental  constitutive  equations  for  elastic 

materials  are  simplified  for  the  isotropic  case  and  for  infinitesimal 

defomtfons but  finite  rotations.  Based  on  these  kinematic  restrictions 

and  for  initially  isotropic  materials  an  incremental  theory of plasticity 

for  me.tals is deduced  from  the  general  theory  of  plasticity  by  Green  and 

Naghdi [50]. It  is  shotm  that  for  initially  isotropic  materials  the  form 

of  the  elastic-plastic  constitutive  equations  remains  invariant  in  Cartesian 

and  initially  orthogonal  convected  curvilinear  coordinates  if  the  Cartesian 

tensors  are  replaced  by  the  physical  components  of  their  correspondfng 

curvilinear  tensors, This invariance  is  very  useful  in  applyfng  the  form- 

ulations  in  Cartesian  coordinates  to  shells  of  revolution. 

Chapters 111, IV, and  V  are  on  the  application of the  incremental 

method  to  the  large  displacement  analysis  of  axisymmetrically  deformed 

shells  of  revolution,  The  kinematic  .relations  for  axisymmetric  shells of 

revolution  are  derived  in  Chapter 111, Also in  this  chapter  the  elastic- 

plastic  constitutive  equations of Chapter 11, and  the  incremental  expres- 

sion  of  virtual  work  of  Chapter I are  specialized  for  axisymmetric  shells 

of  revolution.  Finite  element  formulation of the  variational  expression 

in  Chapter I is given  in  Chapter  IV  and  the  various  stiffness  matrices 

resulting  from it are  demonstrated.  For  the  finite  element  analysis of 

axisymmetric  shells of revolution  a  curved  element  developed  in [140] is 

employed  and  the  displacement  formulation of the  finite  element  method 

for  linear  incremental  analysis  is  set  up. A convenfent  procedure  for  the 

formation  of  the  initial  stress  stiffness  matrix  is  demonstrated,  Some 

numerical  examples  are  giver.  in  Chapter  V  and  the  convergence  of  the 

solutions  are  studied. 
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CHAPTER I: THEORY OF THE INCREI@NTAL METHOD OF ANALYSIS 

I N  CONTINUUM MECHANICS 

1-1 Review of Literature on Incremental Methods of  Analysis  in 
Continuum  Mechanics 

The incremental  method o f   ana lys i s   i n  continuum  mechanics i s  c lose ly  

r e l a t e d   t o  the developments i n   t h e   t h e o r y   o f  the continuum  which is  

u n d e r   i n i t i a l  stress. Two approaches  have  been  followed i n   t h e  formu- 

l a t i o n  of the  theory  of   deformable  bodies   under   ini t ia l  stress. I n   t h e  

first approach  exact  consti tutive  equations  have  been  sought  for  the 

superposi t ion  of  small displacements o r  displacement   gradients  upon 

arb i t ra r i ly   l a rge   deformat ions ,   Tensor ia l   def in i t ions   have   been   used  

for s t r a i n s  and  corresponding stresses have  been  defined. The second 

approach is  more i n t u i t i v e  and relies on approximations  within  the 

kinematics  of  deformation  and  the  consti tutive  equations.  

According t o   T r u e s d e l l  [TI  t h e   i n v e s t i g a t i o n s   i n   t h e   e x a c t   t h e o r y  

da te   back   to  Cauchy who a r r ived  a t  t h e   c o r r e c t  form  of the c o n s t i t u t i v e  

equations of an e l a s t i c  body  under i n i t i a l   s t r e s s  [81, A b r i e f   h i s t o r i c a l  

account  of  the  developments i n  the t h e o r y   o f   e l a s t i c i t y  of  deformable 

bod ies   unde r   i n i t i a l   s t r e s s  is g iven   i n  [ T I  Cauchy's c o n s t i t u t i v e  rela- 

t i o n s  were derived  by Murnaghan [31 by means of  Green's  theory  of  elastic 

energy.  Both Cauchy and  Murnaghan's equations are l i m i t e d  -to the super- 

posi t ion  of   inf ini tes imal   displacement   gradients  on l a r g e   i n i t i a l  deform- 

a t i o n s ,  A more r e s t r i c t i v e   t h e o r y   i n  which the  superposed  displacements 

themselves are i n f i n i t e s i m a l  was developed  by  Green,  Rivlin,  and  Shield 

[ l o ] .  
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All of   these results ind ica t e  t ha t  the i so t ropy   o f   an   i n i t i a l ly   i so t rop ic  

mater ia l  is l o s t  even i f  the displacement  gradients  of  the  superposed 

displacements are in f in i t e s ima l .  

Another  group 3f inves t iga tors   have   adopted   the   nontensor ia l   s t ra in  

quant i ty   based on the   def in i t ion   o f   ex tens ion  ( the so-called  engineering 

d e f i n i t i o n   o f   s t r a i n )  as a measure of  deformation, They separate   pure 

deformations  and  rotations  and  use  constitutive  equations  which  involve 

only  pure  deformations--thus  separating  the  physics of the problem  from 

the  geametry. This approach has been  followed  by  Southwell [ll] , Biezeno 

and Hencky [12], and has been  extensively  discussed  and  used  by  Biot  since 

1934 [13]. The d i f f i c u l t y  w i t h  such a s t r a i n  measure is  t h a t  it is  not 

EL t e n s o r i a l   e n t i t y  and   cannot   be   used   eas i ly   in   curv i l inear   coord ina tes  

unless  some approximations  are made. Also, i n   g e n e r a l ,  it i s  an i r r a t i o n a l  

f’unction of displacement  gradients  unless  approximations  of  the  third  order 

a r e  committed . The resu l t ing   non- l inear   express ion   of   s t ra in   has  a 
% 

r e s t r i c t e d  form i n  which the l i n e a r   s t r a i n s  are in f in i t e s ima l .  Even ro ta -  

t i o n s   a r e   l i m i t e d   t o   t h e  first o r d e r   t o  m a k e  the   t ransformat ions  among 

the va r ious   s t r e s s  measures p r a c t i c a l l y   u s e r u l ,  
** 

It can be  said that the  theories   developed  by t h i s  approach are 

l imi t ed   i n   s cope  and gene ra l i t y  and usua l ly   l eave  many approximations t o  

be made by the   u se r ,  a f ea tu re  which may prove  both  helpful  and  misleading. 

A p a r a l l e l  and more r e s t r i c t e d  development i n   t h e   t h e o r y   o f   e l a s t i c  sta- 

b i l i t y  w a s  reported  by  Prager [14] who superposes   inf ini tes imal   displace-  

ments on l a r g e  ones  and  performs the superposi t ion  of   s t resses   by  the 

P io l a  unsymmetric s t r e s s   t e n s o r .  He assumes tha t   the   incrementa l   cons t i -  

tu t ive   equat ions  are l i n e a r  and i so t rop ic .  

* 
Biot ,  MOA.  b31, pp. 19 

%* 
Biot ,  M.A. [131, pp. 10, 21. 
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I n  an  attempt t o  extend  Biot’s  ideas t o   t h e   a n a l y s i s   o f   l a r g e  

deformations,   Felippa [151 wrote   an   express ion   for   v i r tua l  work i n  

which  he  uses  the  Lagrangian  strain  increment  together  with  the Bie-  

zerio-Hencky type  of stress. It can  be sho1.m t h a t   t h e s e  stresses and 

s t r a i n s  are no t   con juga te   i n   t he   s ense   t ha t   t he i r   p roduc t  does  not 

represent  work unless  the  deformations are i n f i n i t e s i m a l   i n  which case 

B i o t ’ s   r e l a t i o n s  are obtained.   Therefore ,   h is   theory is  a p p l i c a b l e   t o  

problems i n  which  deformations are i n f i n i t e s i m a l   b u t   r o t a t i o n s  are of 

first order .  

The inc reas ing   i n t e re s t   i n   t he   non- l inea r   ana lys i s   o f   s t ruc tu res  

has   acce le ra ted   the   appl ica t ion   of   the   incrementa l  method of   ana lys i s  

t o  such  problems. The use  of  incremental   procedure  together  with  the 

f i n i t e  element  technique  (with or without   i t e ra t ive   p rocedures)  i s  

gaining momentum i n   t h e   a n a l y s i s  of   nonl inear   problems  in   s t ructural  

mecharrics, However, s o  far no r igorous  a t tempt  has been made t o   g i v e  

a genera l   theory   for   the   incrementa l   ana lys i s   and   in  most ca ses   t he  

lack  of  understanding  of  the  theory of t h e  continuum  under i n i t i a l  

stress i s  evident .   This  i s  p a r t l y  due t o   t h e   s i m p l i c i t y   o f   t h e  problems 

analyzed  for  which r e l a t i v e l y  good r e s u l t s  can  be  obtained  even i f  crude 

approximations are made. The common f e a t u r e  of  most  of these  incremental  

procedures is  the   p resence   o f   the  so  called  geometric or the  i n i t i a l  

s t r e s s   s t i f f n e s s   m a t r i x  which  accounts f o r   t h e   e f f e c t   o f  change o f   t he  

geometry  on equ i l ib r ium  equa t ions .   S ince   t he   i nves t iga t ions   i n   t h i s  

area are a p p l i c a t i o n s   t o   v a r i o u s   s t r u c t u r a l  problems  and  do  not  present 

a uni f ied   theory  a detai led  survey  of  them will not   be  presented  but  

r a t h e r   t h e   t r e n d  of  developments will be   ou t l i ned ,  More de ta i led   s tudy  
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of the papers on c i r c u l a r   p l a t e s  and she l l s   o f   r evo lu t ion  w i l l  be given 

i n  Chapter 3. 

The use o f   t he   geomet r i c   s t i f fnes s   ma t r ix   i n   t he   l i nea r i zed   i nc re -  

mental method  of ana lys i s  was  f irst  reported  by  Turner ,   e t  al. [16 ]   fo r  

s t r inge r s   and   t r i angu la r  membrane elements.  Gallagher  and  Padlog [ 171 

der ived   the   geometr ic   s t i f fness   mat r ix   for  beam columns  from t h e  

expression  of  potential   energy.  Argyris  and h i s  co-workers  have 

advocated  the  separation  of  r igid  body  motions  and  deformations  of  the 

e lements   in   the   f in i te   e lement  method of  analysis  and  have  derived  corre- 

sponding  geometric  st iffness  matrices  for  one,  two  and three  dimensional 

bodies  [181, 1191, [20] ,   [21] .  An account of the developments i n   t h e  

incremental   approach  for   nonl inear   analysis   of   s t ructures  up t o  1965 i s  

given  by  Martin  [22].  In  both  [22]  and E231 Martin tr ies t o   p r e s e n t  a 

more cons is ten t  method  of d e r i v i n g   t h e   i n i t i a l  stress s t i f fnes s   ma t r ix .  

Similar   a t tempt  w a s  made by Oden [241 who uses   the  potent ia l   energy  of  

the s t ructural   system. The appl ica t ion   of   the   geometr ic   s t i f fness   mat r ix  

f o r   t h e   a n a l y s i s   o f   l i n e a r   e i g e n v a l u e   s t a b i l i t y  problems f o r  beam columns 

is reported  by  Gallagher and  Padlog [17]. The s t a b i l i t y   a n a l y s i s   f o r  

plane stress problems is considered  by  Turner, e t  a l .  [251 ,   for   p la te  

problems  by  Hartz  [261  and Kapur and Har t z  [271 ,   and   for   she l l s  by Gal- 

lagher ,  e t  a l .  [ 281 , [291  and  Navaratna [ 30 ] . The problems  of  post 

buckl ing  of   plates  i s  s tudied  by Murray [31] who uses  an i t e r a t i v e  

incremental   procedure,   and  of   plates   and  cyl indrical  shells by Schmit, 

Bogner,  and Fox [32] .  The importance of re ta in ing   h igher   o rder  terms i n  

the  formulation  of the incremental  method fo r   t he   ana lys i s   o f   ce r t a in  

s t r u c t u - e s  was pointed  out  by  Purdy  and  h-zemieniecki  [331.  Mallet  and 

Marcal [341 d iscuss  the methods  of  formulation  of  direct  and  incremental 
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procedures  and  arrive  at  various  degrees  of  non-linearities. 

In  this  chapter a general  incremental.  method  of  analysis  is  pre- 

sented  in  which  the  size  of  an  increment  is  arbitrary.  The  incremental 

equations  of  equilibrium  are  given  in  the  form of the  expression  of 

virtual v7ork  which  renders  itself to direct  methods  of  solution  of  the 

variational  problems.  In  order  to  make  the  presentation  self-contained, 

a summary  of  the  laws  of  thermodynamics  and  field  equations  are  given 

in  section  1.2.  The  treatment  follows  the  work  of  Truesdell  and  No11 

[36], Green  and  Adkins [37], and  Green  and  Rivlin [38]. The  incremental 

form of  the  nonlinear  constitutive  equations  for  elastic  materials  is 

derived  from  the  laws  of  thermodynamics. A more  restrictive  form  of  the 

constitutive  equations  for  the  elastic-plastic  continuum  is  given  in 

chapter  2.  The  theory  is  presented  in  Cartesian  coordinates so that  the 

understanding of the  main  ideas  becomes  easy.  However,  for  the  sake  of 

completeness of presentation  the  derivations  are  also  carried  out  in 

curvilinear  coordinates  in  Appendix A. In  section 1.5  it  is  demonstra- 

ted  that  the  constitutive  equations  for  isotropic  elastic-plastic 

materials  in  orthogonal  curvilinear  coordinates  will  be  the  same  as 

those  in  Cartesian  coordinates  if  the  Cartesian  tensors  are  replaced 

by  the  physical  components  of  the  curvilinear  tensors.  This  invari- 

ance  will  be  very  helpful  in  the  application  of  the  incremental  method 

for  the  solution  of  problems  which  are  formulated  in  orthogonal  curvi- 

linear  coordinates. 

Choice  of  proper  notations  becomes a problem in a treatise  of 

this  form  which  deals  with  several  types  of  stresses,  strains,  and 

coordinates.  Each  new  variable  is  defined  when  it  first  appears. A 

collection of all  the  notations  is  appended.  Both  vectorial  and 
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indicia1 notations are  used. The summation convention holds. Latin 

indices range from 1 to 3, and Greek indices indicate 1 and 2. 
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I,2 The Field  Equations  and Thermodynamic Laws 

Consider  two  configurations  of a deformable body  on i t s  pa th  of 

deformation  from an i n i t i a l   s t a t e   c h a r a c t e r i z e d   b y  at most an i s o t r o p i c  

state o f   s t r e s s   t o  a f i n a l   c o n f i g u r a t i o n  (see Figure 1.1). These are 

ca l led   conf igura t ions  1 and 2. The volume , boundary  surface  and the 

coordinates  of the material poin ts  of t h e  body i n  the i n i t i a l ,  first 

and  second  configurations are denoted  by  v,a,z  v,a,zi,  and V,A,ZA 

respec t ive ly .  The balance  of  energy in   con f igu ra t ion  1 can be In- i t ten 

"- 
i' 

as 

where ~t represents  the material derivative holding zi f ixed ,  

i s  t h e  mass dens i ty  i n  the i n i t i a l  s tate,  v - is t h e   v e l o c i t y ,  4 , 
1- 

- - 
PO 

f , lr are the   in te rna l   energy ,  body force ,   ana  rate of  heat produc- 

t i o n ,   r e s p e c t i v e l y ,   p e r   u n i t  mass, t i s  the t r a c t i o n   i n   c o n f i g u r z t i o n  

1 measured pe r  unit of area a , (see  Figure 1.2) , and ii is the rate 

o f   hea t   f l ux   pe r   un i t   o f  area a . 

,., 
1- 

w 

- 

- 

The invariance  requirement   of   the   energy  equal i ty  (1.1) under 

superposed  uniform  translational  and angular v e l o c i t i e s  leads t o  the 

following  equations [ 38 1 : 

(ISij  + 
j 

the  equations of 

- 1- - 9  

k o k  f = p  v 

11 

equi l ibr ium 
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and 

= 1 
ij ji S Y 

Cauchy ' s equation 

and  heat  flux  equation 

where ls are  the  components  of  the  Piola  symmetric  stress  tensor, 

the dot over  v  denotes  material  derivative  of  vk,  n  is  the  unit 

normal  vector to surface  a  (see  Figure  1.2),  and qk is  the  rate 

of  heat  flux  in  configuration 1 across  a  converted  coordinate  surface 

ij - 
k - 1- 

which  in  the  initial  state  is  perpendicular to base  vector  i  The 

Piola symmetric stress  tensor ls is  associated  with  the  deformed ij 

-k 

base  vectors g (see  Figure  1.2).  For  example, s denotes  a  force 

acting  on  configuration 1 parallel  to  base  vector gn and  on  a  surface 

which  had  unit  area  in  the  initial  state  and  which  was  perpendicular to 

base  vector  i . Therefore,  this  stress  acts  in  configuration 1 but  is 

measured  per  unit of area  in  the  initial  configuration.  Another  field 

equation  denotes  the  conservation of mass  which  has  already  been  assumed 

in (1.1). Substitution  of  (1.2) , (1.3), (1.4) and  (1.5)  in  (1.1)  leads 

to  the  following  local  energy  equality. 

I - mn 

-m 

where 'E is  the  Lagrange  strain  tensor  in  configuration 1. Rk 
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The second law of thermodynamics states t h a t  

V v a 

where 'S is  the entropy  per   uni t  mass and 8 is  the temperature.  

Subs t i tu t ion   o f  (I. 5)  i n t o  (I. 7 )  r e s u l t s   i n   t h e   f o l l o w i n g   l o c a l  

express ion   for   the   second law of  thermodynamics 

Helmholtz f ree   energy  funct ion 'A i s  defined  by 

Subs t i tu t ion   o f  (1.9) i n t o  (1.6) and (1.8) gives 

- 1  - 1. 1 1. 
po r - po( A + si + se) - l- + 1s 1- 

'k ,k kR 'kR = 

and 
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1.3 The  Principle  of  Virtual  Work 

A generic  point 6 in  the  initial  state  will  occupy  positions p 

and  P  in  configurations 1 and 2, respectively.  The  displacement  vec- 

tors  between  these  positions  are  shown  in  Figure  1.1.  The  equations  of 

equilibrium  at  Configurations 1 and 2 can  be  written  in  the  form  of  the 

expressions  of  virtual  work  in  different  manners  depending  on  the  choice 

of  the  reference  configuration  for  the  variables  involved,  and  also  on 

the  vectors  in  terms  of  which  the  virtual  displacements  are  expressed. 

For  example,  the  variables  in  configuration 1 can  be  written  with  ref- 

erence to the  coordinates  of  any  configuration  desired;  also  the  virtual 

displacements  for  point p can  be  written  as 6(.'u) or 6u and  for 

point  P  can be written  as  6u  or 6 (  u). Three  incremental  expres- 

sions  of  virtual  work  are  considered.  The  first  one  in  which  configu- 

ration 1 is  taken  as  the  reference  and  6u  as  the  virtual  displacement 

is  derived  in  this  chapter  and  used  in  the  subsequent  developments. 

The  second  expression  of  virtual  work  uses  the  initial  configuration  as 

the  reference  and 6 u, (S2u  as  the  virtual  displacements.  For  hyper- 

elastic  materials  this  formulation  can  be  recast  in  the  form  of  the 

variation  of  the  incremental  internal  energy.  The  third  expression  of 

virtual  work  uses  the  initial  configuration  and  6u.  These  last  two 

expressions  are  derived  in  Appendix C. 

- - 
2 - - 

- 

1 - - 

- 
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The express ion   of   v i r tua l  work 17v at configurat ion 2 is  

(1.12) 

A V 

where T i s  the   su r f ace   t r ac t ion   pe r   un i t ’   o f   a r ea  A , p i s  t h e  mass 

densi ty   in   configurat ion  2 ,   and F i s  t h e  body fo rce   pe r   un i t   o f  mass. 

Equation  (1.12)  can be wr i t ten   in   t e rms   of  the coordinates  of con- 

,.d 

“ 

f igu ra t ion  1 by  choosing  proper   def ini t ions  for   t ract ion  and body force .  

One such   t r ac t ion  is defined  by 

where 2t is t h e   t r a c t i o n   i n   c o n f i g u r a t i o n  2  and  measured  per u n i t   o f  

a r ea   i n   con f igu ra t ion  1, and da is t h e  element  of  surface area i n  con- 

- 

f igu ra t ion  1. 

The s t r e s ses   a s soc ia t ed   w i th   t r ac t ion  2t can be def ined   in   var ious  - 
ways,  one  of  which i s  t h e  symmetric P i o l a  stress tensor.   Consider the 

neighborhood  of a generic   point  p  of t h e  deformable  body in   conf igura-  

t i o n  1 and t h e  same neighborhood in   configurat ion  2 .   For   s implici ty   of  

presenta t ion  a two dimensional  picture  of  such  neighborhood is  shown i n  

Figure 1.3, a l though   t he   t heo re t i ca l  development i s  c a r r i e d   o u t   f o r  a 

three  dimensional  body. The Cauchy stresses i n  this neighborhood i n  

configurat ion 1 a r e  T which are a s soc ia t ed   w i th   t he  unit base vec- i j  

t o r s  ik . The P io la  symmetric stresses of   our   in te res t  which a c t  i n  

t h e  same neighborhood in   con f igu ra t ion  2 are ca l l ed  2s These 

stresses a re   a s soc ia t ed   w i th   t he  deformed base vec tors  G .  . For  example 

i j  

. “3. 
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2s denotes a fo rce   ac t ing   i n   con f igu ra t ion  2 on a surface  which 

had a un i t   a r ea   i n   con f igu ra t ion  1 and was pe rpend icu la r   t o   base   vec to r  

mn 

i and  which is  p a r a l l e l   t o   t h e  base vec tor  G . Therefore ,   these 

s t r e s s e s  are in   con f igu ra t ion  2 bu t  aye measured p e r   u n i t  area i n  con- 

f igu ra t ion  1. The re l a t ionsh ip -  between 2t and t h e   s t r e s s e s  2s is  

of t h e  same form as equation (1 .4 ) .  

m y  -.n 

- i j  

vhere n is  t h e   u n i t  normal  vector t o   s u r f a c e  a . - 
The magnitude  of t h e  components of 

a r b i t r a r i l y   d i v i d e d   i n t o  two p a r t s  (see 

2 
i j  = i j  + ' ij 

-. 

s t r e s s   t e n s o r  *s can be 

Figure 1 . 4 ) .  
i j  

i n  which 'cij have t h e  same magnitude as the  corresponding Cauchy 

s t r e s s e s   i n   c o n f i g u r a t i o n  1 but a re   a s soc ia t ed   w i th   t he   base   vec to r s  

G , and s are symmetric stress components  which  have  magnitudes 
w i j  

e q u a l   t o   t h e   d i f f e r e n c e  between t h e  stresses s and T Substi-  

tu t ion   o f   equa t ions  ( I .15) ,  (1.14) , and (1.13) i n t o   t h e  first i n t e g r a l  

on the   r i gh t   hand  side of  equation (1.12) results i n  

2 
i j  i j  

This   surface  integral   can be replaced by an  equivalent volume 

i n t e g r a l  by means of Gauss t ransformation.   In  view  of t h e  symmetry of 

19 



s and T , t h e   f i n a l  result is 
i j  i j  

J ( T i j  + Sij)6EjidV 
V 

i n  which E is  the Lagrangian 
i j  s t r a i n  from configurat ion 1 t o  2. 

+ Yc,i \,j) (1.18) 

Considering  the l a w  of conservation  of mass, the   second  in tegra l  

on t h e   r i g h t  hand side of equation  (1.12)  can be wr i t t en  as 

J pF 6u dv = /p" * 2fk 6% dv 

v V 

where 2fk denotes the body f o r c e   p e r   u n i t  mass ac t ing   i n   con f igu ra t ion  

2, bu t  measured in   t e rms   of   the   coord ina tes   in   conf igura t ion  1. 

Subst i tut ion  of  (1.17) and (1 .19)   in to  (1.12) y ie lds  

i j  'k,j 1 'i + po 'fk16u, dv (1.20) 
V V 

The i n t e g r m d i n  the second  integral  on t h e  right hand s i d e  is  t h e  

express ion   for  the equi l ibr ium of t h e  body and i s  equa l   t o   ze ro .  There- 

f o r e  

20 



o r  

p t i  6u. 1 da + J o  p 2f i ‘Bn. 1 dv = Jhij + SiJ1 6Eij dv (1.21) 

The e x p r e s s i o n   f o r   v i r t u a l  work at configurat ion 1 can be w r i t t e n  

as 

(1.22) 

i n   v h i c h  ’t i s  t h e   t r a c t i o n   a c t i n g   p e r   u n i t   o f  area of a , fl i s  1 
i 

t h e  body fo rce   ac t ing   pe r  unit of mass in   con f igu ra t ion  1, and e i s  

t h e   l i n e a r   p a r t   o f   L a g r a n g i a n   s t r a i n  between  configurations 1 and  2. 

i j  

e = - ( u  + u  1 1 
i j  2 i , j   j , i  (1.23) 

Subtract ion of (1.22) from (1.21)  gives 

V 
(1.24) 

1 nij  = E - eij = xYi i j  
U 
k ,j 

(1.25) 

is  the  nonl inear   par t   of   the   increment   of   Lagrangian  s t ra in   between 

configurat ions 1 and 2. 

Let 

ana 
ti = 2t - It 
f i  = 2f - l f  

i i ’  

i i 

(1.26) 
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. " 

which  denote the   increments   o f   t rac t ion  and body fo rce  between  configur- 

a t ions  1 and 2 both measured i n  terms of   the  coordinates   of   configurat ion 

1. Subs t i tu t ion   of  these i n   t h e   r e l a t i o n  (I .24)   yields  

This i s  the   incrementa l   express ion   of   v i r tua l  work which i n   e f f e c t  

i s  a statement  of the equi l ibr ium  equat ions   o f   the  body a t  configurat ion 

2 i n  terms of   the   var iab les  which a re   exp res sed   i n   t he   coo rd ina te s   o f  

configurat ion 1. The proof   tha t  (I .27) leads to   the   incrementa l   equi -  

librium  equations  and  the  corresponding  boundary  conditions is  g iven   in  

Appendix A where t h e   p r i n c i p l e   o f   v i r t u a l  work is  d e r i v e d   i n   c u r v i l i n e a r  

coordinates .  

Equation  (1.27) i s  an expression  for   equi l ibr ium  of   the  deformable 

body. It is  n o t   r e s t r i c t e d   t o  any p a r t i c u l a r   c o n s t i t u t i v e  l a w  which 

t h e  material of  the  continuum may obey. 
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I. 4 Incremental  Constitutive  Equations  of  Elasticity 

The  constitutive  equations  of  the  continuum  are  written  based  on 

mathematical  approximations  of  physical  observations  sub.ject to  the  laws 

of  thermodynamics,  and  some  invariance  requirements  like  the  principle 

of  material  frame  indifference [371, [40] .  For an  elastic  continuum  it 

can be shown  that 

and 

alA 

where 

(1.31) 

'A = A( Eij ,e> 

IS = S( Eij,e) 

Is ij = ls ij (lEk,, ,e)  

1 1  

1 1  

- 
qi - cli( Eij,B)e¶k) 

- - 1  

For  the  deformable  body  in  Figure 1.1, the  laws  of  thermodynamics 

for a variable  configuration 2 can be written  as 
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- 2  - po(2i + 2 i e >  - 2- qk,k + 2- s 
Po kR  kR 2;: = o  , 

i n  which 

2- s is  t h e   P i o l a  symmetric s t r e s s   t enso r   i n   con f igu ra t ion  2 measured 

pe r   un i t   o f  area a (see  Figure  1 .2)   and Ei j  i s  de f ined   i n  Appendix 

B as 

i j  - 

It is p o s s i b l e   t o   d i v i d e   t h e  f’unctions i n   ( 1 . 3 4 )   i n t o  two p a r t s  



Subs t i t u t ion  of (1.36) i n t o  (1.33) r e s u l t s   i n  

which i n  view of (1.28) and (I .29) becomes 

aA 

“kt kR 
-1 5 

I n   t h e  same manner the  energy  equal i ty  (1.32) reduces t o  

Since 1. 
5 2  

similar argument 

that 

and 

0 , ckR , and 8 can  be  chosen 

presented  by Coleman and No11 

2- 
‘k?’k , 

e -  
(1.38) 

a r b i t r a r i l y ,   f o l l o w i n g  a 

[40] it can  be  concluded 

(1.40) 

These a re   the   incrementa l   cons t i tu t ive   equat ions  for an e l a s t i c  

continuum . 
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All t h e   d i s c u s s i o n   i n   t h i s   s e c t i o n   h a s   d e a l t  wi th  s t r e s s e s  

L 2- 
S s , and s which are measured  per  unit  of area a i n  

- 
i j  ' i j  i j  

t h e   i n i t i a l  state. In o r d e r   t o   b e   a b l e   t o   u s e   t h e   c o n s t i t u t i v e  

equations (I. 40) , and (I. 41) i n  the expression of v i r t u a l  work (I. 27) , 
they must be  expressed i n  terms of s t r e s s e s  2s , and s which are 

measured  per  unit   of  area a in   con f igu ra t ion  1. The fol lowing  t rans-  

i j  i j  

formations  hold  between  the Cauchy s t r e s s   t e n s o r   i n   c o n f i g u r a t i o n  2 and 

the P io la  stresses s and s [29] , [ 311. 2 2 
i j  i j  

- p  2- T -  
MN To azm  azn 

- s .  mn 

Subs t i tu t ion   o f  (1.45) i n t o  (1.44) gives 

2 PO 

PO 

s =--z z S 
2- 

i j  i , m  j , n  mn ' (1.46) 

and a l s o   s u b s t i t u t i o n  of (I.15), and (1.36) i n t o  (1.46) results i n  3 

PO - 
PO 

s ="z Z S 
i j  i , m  j , n  mn 

me incremental   const i tut ive  equat ions  in   terms of 2s and s 

can be obtained  by  subst i tut ing (1.46), and (1.47) i n t o  (1.40) and (1.41). 
i j  i j  
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1.5 Const i tut ive  Equat ions  in   Curvi l inear   Coordinates  

I n  some problems it is  necessary   to   use   curv i l inear   coord ina tes .  

Compared with the   cons t i t u t ive   equa t ions  i n  Cartesian  coordinates ,   the  

cons t i t u t ive   equa t ions   i n   cu rv i l i nea r   coo rd ina te s  are d i f f i c u l t   t o  write, 

t o   i n t e r p r e t   p h y s i c a l l y ,  and t o   u s e   i n  the so lu t ion   of   p rac t ica l   p rob-  

lems. It has been shown by C a r r o l l  [ 411, i421 that f o r   i s o t r o p i c  and 

t ransverse ly   i so t ropic   s imple  solids t h e   c o n s t i t u t i v e   e q u a t i o n s   i n  

terms  of Cauchy s t r e s s   i n   Ca r t e s i an   coord ina te s   r ema in   i nva r i an t   i n  

or thogonal   curv i l inear   coord ina tes  if the   Ca r t e s i an   t enso r s   a r e   r ep laced  

by the   phys i ca l  components of the   curv i l inear   t ensors .   This   invar iance  

is d e m o n s t r a t e d   i n   t h i s   s e c t i o n   f o r   e l a s t i c  materials when the   cons t i -  

tu t ive   equat ions  are expressed  in  terms of P i o l a  symmetric s t r e s s  

t enso r .  The form  invariance  of  Piola  symmetric stress t enso r   s imp l i f i e s  

the proof.  In  Chapter I1 it is proved that the   invar iance  of cons t i tu -  

t i ve   equa t ions  also holds   for  a spec ia l   t heo ry   o f   p l a s t i c i ty .  

If the   cu rv i l i nea r   coo rd ina te   sys t em  in  the i n i t i a l  state x i s  -i 

orthogonal   then  the  t ransformation  between  the  local   Cartesian  coordi-  

na tes   (assoc ia ted  with un i t   base   vec to r )  on x and the   g loba l   Ca r t e s i an  

coordinate  system z can be performed  by the or thogonal   t ransformation 

matr ix  R having the property 

-i 

- 
i 

i j  

vh e r e is  the Kronecker delta. 
'ij 

The phys ica l  components  of the P i o l a  symmetric s t r e s s   t e n s o r   i n  

or thogonal   curv i l inear   coord ina tes  are d e f i n e d   i n  Appendix D. They 

are given  by 

1 
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The phys ica l  components  of the  Lagrangian  s t ra in   tensor  are def ined as 
1 

Since   these   phys ica l  components a re   a s soc ia t ed  w i t h  un i t   base   vec to r s  

i n   t he   cu rv i l i nea r   coo rd ina te s  i n  t h e   i n i t i a l   c o n f i g u r a t i o n ,   t h e y   t r a n s -  

form t o  their  global  Cartesian  counterparts  by 

's* = R R ls 
i j  i m  j n  mn (1.53) 

where ls and a r e  the s t r e s s   a n d   s t r a i n   t e n s o r s   i n   t h e   g l o b a l  mn 
Cartesian  coordinate  system. 

The Cartesian form  of t he   cons t i t u t ive   equa t ions  is 

1 1 1  
s i j  = s (  Ek& 

If t h e  material is i so t rop ic   t hen  (1.55) must remain  invariant  under 

any or thogonal   t ransformat ion .   In   par t icu lar   for   the   o r thogonal  

t ransformation then 
Rij 

I I 
R i m  j n  R s i j  = s ( R i k  R j a  'kg) * 

Subs t i tu t ion   of  (1.53) and (I.  54)  i n t o  (1.56) r e s u l t s   i n  

Comparison o f   ( I .  5 7 )  and (I. 55) ind ica t e s  t ha t  t h e  form  of  the  consti- 

t u t ive   equa t ion  has remained inva r i an t .   Th i s   r e su l t  is very   he lpfu l  

i n   d e a l i n g  w i t h  t h e  shell  problem. 
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CHAPTER 11: LARGE DISPLACEMENTS, SMALL DEFORMATIONS 

11.1 I s o t r o p i c   E l a s t i c  Materials 

The cons t i tu t ive   equat ions  

and 

a re   qu i t e   gene ra l .  If the free energy  function A is known i n  terms 

of 'Ekk and E,, then  Ska and skR can  be  determined. Assuming 2- 

t h a t  A is an  analyt ic   funct ion it can  be  expanded as a power s e r i e s  

of and GkR . I n   p a r t i c u l a r  fo r  i so t rop ic   ma te r i a l s  A can be  

expressed as a func t ion   of   the   invar ian ts  of %a and SkR . For 

c e r t a i n  problems a f i n i t e  number of terms i n   t h e  power ser ies   expansion 

1 

1 

is enough t o  approximate A and  hence the   cons t i t u t ive   equa t ions  

a c c u r a t e l y .   I n   t h e   s p e c i a l   c a s e  where  deformations  are   inf ini tes imal  

but   displacements   and  rotat ions are n o t ,   t h e   r e t e n t i o n  of t h e  terms 

i n  t h e  power series of A up t o   t h e  second power of E 

is  enough. Then equations (I  .40 ) and (I. 41) will l e a d   t o   l i n e a r  

r e l a t i o n s  between t h e  stresses s 

'kk 

I 
kk and 'kt 

- 2- ' 

kR ' 'kR and t h e   s t r a i n s  'E and kR 

For i s o t r o p i c   e l a s t i c  materials 2A can b e   w r i t t e n   a s  

29 
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where X and 1-1 are t h e  Lame's constants .   In  (11.1) t h e   s t r a i n  2~ 

i s  l imi ted   to   in f in i tes imal   deformat ions  
i j  

2E = 2 l 2  2U + 2 e  2w + 2 w  w ) 
eij + 8 e i k   k j  i j  j k  k i  i k  k j  

where 

(11.2) 

The displacements u being  in   the  direct ion  of   coordinate   systems  of  

t h e   i n i t i a l   c o n f i g u r a t i o n   ( s e e   F i g u r e  I .1). It is shown i n  appendix B 

2- 
i 

that 

where 

where 

2E = Eij  + Sij  y 
1 

i j  (11.3)  

Sij = z E .  m , i  n , j  mn 

Subs t i t u t ion  of (11.3) and  (1.35)  into (11.1) r e s u l t s   i n  

(1.35) 

(11 .4 )  

and 

Equations  (1.40)  and (1 .41)  become 
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and the cons t i tu t ive   equat ions  (I. 48) and (1.49) become 

and 
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11.2 Remarks  on  Some  Recent  Developments  in  the  Theory  of  Plasticity 

!The  study  of  plastic  deformations  of  materials  has  been  under 

consideration  for  almost  a  century.  However,  most  of  the  investigations 

have  been  limited  to  infinitesimal  deformations  and  even  then  the 

diversity  of  opinions  and  observations  has  led  to  various  special 

theories  of  plasticity.  Detailed  account  of  these  is  given  in  Hill's 

book [ 593 and  the  review  papers  by  Naghdi [ 4 3 1  and  Koiter [ 4 4 1 .  Only 

very  recently  the  construction  of  a  large  deformation  theory  of  plas- 

ticity,  based  on  the  principles  of  thermodynamics  and  the  invariance 

requirements  in  continuum  mechanics  was  undertaken  by  some  investigators. 

A brief  review  of  some  of  the  recent  developments  in  the  theory of 

inviscid  plasticity  is  given  in  this  section  and  some  remarks  are  made 

to show  the  relationship  among  them. 

Since  many  assumptions  existed  in  the  theory  of  plasticity,  it  was 

desirable  to  introduce  concepts  from  which  several  of  the  assumptions 

could  be  derived  consistently.  One  such  hypothesis,  now  called  Druck- 

er's  postulate,  was  presented  by  Drucker [ 4 5 ] .  It  states  that  the  work 

done  by  an  external  agency  on  an  elasto-plastic  material  going  through 

a  closed  cycle  of  stress  is  non  negative.  That  is, 

(11.11) 

The  Mises-Prager  plastic  potential  stress-strain  relations  and  the 

convexity  of  loading  surface  are  derived  from  this  postulate.  Later, 

Il'iushin,  who  was  motivated  by  the  observation  that  in  general 

Drucker's  postulate  does  not  assert  the  irreversibility  of  plastic 

deformations,introduced  another  postulate [ 4 6 1  which  states  that  the 

32 



work done  by  an ex te rna l  agency on an e las to-p las t ic   mater ia l   go ing  

through a c losed   cyc le   o f   s t r a in  is p o s i t i v e .   I n   p a r t i c u l a r  

(11.12) 

This  hypothesis leads to   no rma l i ty  rule, however, it impl ies   the  

suf f ic iency   ra ther   than   the   necess i ty   o f   convexi ty   o f   the   y ie ld   sur face ;  

The use   o f   the  laws of  thermodynamics i n   t h e   c o n s t r u c t i o n  of t h e  

theory  of p l a s t i c i t y  i s  a more log ica l   approach   than   the   o ther  methods 

which use  the  conclusions  based on a l imited  c lass   of   physical   obser-  

va t ions .  The i n v e s t i g a t i o n s   i n   t h i s  area p r i o r   t o  1960 are   very  few 

and are mainly on i n f i n i t e s i m a l   t h e o r y   o f   p l a s t i c i t y  [43]. Sedov 

recognized   th ree   conf igura t ions   in   the   p rocess   o f   e las to-p las t ic   defor -  

mations  of  the  continuum [471 (see  Figure 11.1): an i n i t i a l l y  free of 

s t r e s s  state, a current   configurat ion  with  complete   e las to-plast ic  

deformations,   and  an  intermediate  configuration which is  obtained when 

t h e   s t r e s s e s   i n   t h e  body a t  cur ren t   conf igura t ion   a re  released. Thus 

t h e   t o t a l   d e f o r m a t i o n  is  composed of an e l a s t i c   p a r t  which i s  between 

configurat ions  (c)   and (b) and a p l a s t i c   p a r t  between (a) and  (b) .  In 

gene ra l   t he   i n t e rmed ia t e   s t a t e  is not  Ehclidean. Sedov develops a 

theory   o f   p las t ic i ty   based  on t h i s   k i n e m a t i c a l  model  and some thermody- 

namical  considerations.   Drucker 's   postulate is used   i n  a thermodynamical 

context   and  the  associated  f low rule is  derived. Backman also i n t ro -  

duced the   concept   o f   the   th ree   conf igura t ions  [481. However, he  def ines  

t h e   e l a s t i c   a n d   p l a s t i c  components o f   s t r a i n s   d i r e c t l y   i n   t e r m s   o f   t h e  

displacement  gradients.  Due t o   t h e  non-Euclidean  character  of  the 
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in te rmedia te   conf igura t ion   the   def in i t ion  of  e l a s t i c  and p l a s t i c  com- 

ponents  of strain i n  terms  of  the  kinematics  of  deformation is  n o t   i n  

genera l   cor rec t .  Lee and  Liu [491 recognize  the  non-Euclidean  char- 

acter   of   the   intermediate   configurat ion  and  def ine  the  kinematics   of  

deformation  by 

and  [Fe]  and  [Fp]  are  linear  transformations  between  configura- 

t i ons   (b )   and   ( c )   and  (a) and (b)   respec t ive ly   ( see   F igure  11.1). 

These transformations are not   in   genera l   the   d i sp lacement   g rad ien ts  

between the  corresponding  configurat ions.  Lee  and L i u  develop a par- 

t i c u l a r   t h e o r y   o f   p l a s t i c i t y   f o r  the a p p l i c a t i o n   t o  a one-dimensional 

wave propagation  problem. 

Recently  Green  and Naghdi [ 501 [5l] developed a genera l  non- 

l i n e a r   t h e o r y   o f   p l a s t i c i t y  which u t i l i zes   the   thermodynamica l  lami 

and  the  invariance  requirements   in   the  theory of continuum  mechanics. 

For the  kinematics  of  deformation it is  assumed tha t   Lagrang ian   s t r a in  

tensor  can be d iv ided   i n to  two p a r t s  as 

e P 
‘ij i j  i j  = E  + E  

where , and E‘ are c a l l e d   t h e   e l a s t i c   a n d   p l a s t i c  components of e 
‘ij i j  

s t ra in   respec t ive ly   and   they   have   the  same invar iance   p roper t ies  as 

E No k inemat i ca l   i n t e rp re t a t ion  is  given f o r  and E I) and P 
i j  i j   i j  
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t hey   a r e  found  from the   cons t i tu t ive   equat ions   on ly .  It can  be shown 

tha t   t he   k inemat i c   i dea   i n  [ 471, [ 491 , and [ 50 I a re   equiva len t .  

The Lagrangian  strain  between  configurations (a )  and ( c )  c8n be   wr i t t en  

as ro l iows   in   mat r ix   no ta t ion  

where [I] is the iden t i ty   ma t r ix .   Subs t i t u t ion   o f   (11 .13 )   i n to .  

( 11 e 16 ) gives 

Subtract ion  and  addi t ion  of   the  product  [F ] [F  ] from (11.17) and 

rearrangement of the  terms on t h e   r i g h t  hand s i d e   r e s u l t s   i n  

P T  P 

The first and  second terms on the r i g h t  hand s ide   o f  (11.18) can  be 

def ined as p l a s t i c  and e l a s t i c   p a r t s   o f   s t r a i n .  Thus 

[El = [EP] + [ E e l  (11.19) 

which i s  t h e  same as (11.15). 

It i s  shown by  Green  and Naghdi [50]   tha t   the   second law of   ther-  

modynamics puts  a r e s t r i c t i o n  on the   p las t ic   deformat ion ,  This 

r e s t r i c t i o n  is  more genera l   than   Drucker ' s   pos tu la te ,   In   par t icu lar  

it is  shown that f o r   t h e   i n f i n i t e s i m a l   u n i a x i a l   t e n s i o n   t e s t  t h e  

p l a s t i c  volume change is  not   zero  unless   Drucker 's   postulate  i s  adopted 

[ 521. Thus they  conclude that  Drucker 's   postulate  is not  general  

enough bu t  i s  a good assumption  for some mater ia l s  l i k e  metals .   In   the 
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same paper   [521  they  special ize   the  general   non-i inear   theory  and  obtain 

a b i l i n e a r   s t r e s s - s t r a i n   r e p r e s e n t a t i o n   f o r  a un iax ia l   t ens ion  tes t .  
% 

The t h e o r y   o f   p l a s t i c i t y   i n  [SO] has   been  extended  for   the  e las t ic-  

p las t ic   mul t ipo lar   cont inua   [53]  ¶ a1d a l so   t o   Cosse ra t   su r f ace  [54]. 

Following Coleman ant  Noll's approach [ 401 ¶ Dil lon  [ 55 1 has 

a r r ived  from the  second law of  thermodynamics at t h e   r e s u l t   t h a t   t h e  

loading  and  unloading stress-strain r e l a t i o n s  are d i f f e r e n t   f o r  mate- 

rials in  vhich  the  dependent  thermodynamical  variables are functions  of 

deviators   of  stress and s t r a i n .  Thus h e   r a t i o n a l l y   a r r i v e s  a t  a 

f e a t u r e   e s s e n t i a l   i n   p l a s t i c i t y .  Another  approach i n   t h e   s t u d y   o f   t h e  

t h e o r y   o f   p l a s t i c i t y  was followed  by  Pipkin  and  Rivlin [ 561 ~-7ho use a 

funct ional   theory  for   the  ra te   independent  materials and e s s e n t i a l l y  

dynamical  concepts. They u s e   I l ' i u s h i n ' s   p l a s t i c i t y   p o s t u l a t e .  

S 
It seems t h a t   t h e  assumed  form  of the  hardening  parameter  in [50] leads 

at most t o  a b i l i n e a r   s t r e s s - s t r a i n   c h a r a c t e r i s t i c   i n  uniaxial tens ion .  
The hardening  parameter must be given a more general   form  in  order t o  
ob ta in 'a   curv i l inear   one-d imens iona l   s t ress -s t ra in   representa t ion .  
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II ,3 A Specia l  Form of   the Theory  of P l a s t i c i t y  

The general   theory  of   plast ic i ty   developed by  Green  and Naghdi 

[ 501 can   be   spec ia l ized   for   appl ica t ion   to   spec i f ic   p roblems.   For  any 

material it i s  poss ib l e   t o   i n t roduce   fu r the r   cons t i t u t ive   r e s t r i c t ions  

and  hence  reduce  the  general   theory  to a more t r a c t a b l e  form.  For 

example, in   the  case  of   metals   Drucker 's   postulate   and von Mises 

y ie ld   condi t ion  are good consti tutive  assumptions which s impl i fy   t he  

general   theory  appreciably.  

I n   t h i s   s e c t i o n   a r t e r  a short   review  of  the  general   equations,  

t he   e l a s t i c -p l a s t i c   cons t i t u t ive   equa t ions   fo r  homogeneous and 

in i t i a l ly   i so t rop ic   ma te r i a l s   a r e   s tud ied .   Drucke r ' s   pos tu l a t e  and 

von Mises y ie ld   cond i t ion   a r e  assumed and  specific  forms  of  the  hard- 

ening l a w  are considered. The t reatment  w i l l  b e   l i m i t e d   t o   i s o t h e r -  

m a l  processes.  

Consider a deformable body  on i t s  path  of  deformation from  an i n i -  

t i a l  s t a t e   t o  a f ina l   conf igura t ion   ( see   F igure  1.1). A t  time t t h e  

material points   of   the  continuum  have  coordinates z and a l l  toge ther  

form configurat ion 1. In   th i s   conf igura t ion   the   i so thermal   y ie ld  

i 

funct ion which is a regular surface  containing the o r i g i n   i n   t h e   s t r e s s  

space may be expressed  by 

) = K (11.20) 

where K is the  hardening  parameter  depending on the whole h i s to ry   o f  

motion  of the body and 'E' is  c a l l e d   t h e   p l a s t i c   s t r a i n   t e n s o r  and 

i s  given by 

i j  

38 



= l&P. + & 
l e  

i j  1J i j  (11.21) 

i n  which 'Ee is t h e   e l a s t i c   s t r a i n   t e n s o r .  Both l&:j and E i j  i j  

have  the same inva r i an t   p rope r t i e s  as '& bu t   t hey  are determined 

only from the   cons t i t u t ive   r e l a t ions   and   no t   t he   k inemat i c s  of defor- 

mat ion.  

l e  

i j  

Green and Naghdi [50] have shown t'nat i f  t h e r e  exists a l i n e a r  

relationship  betveen  and  then i j   i j  

during  loading  where 

( 11.22) 

In  ( 11.22) X i s  a sca la r   func t ion   of  s and 'Ep and 6 is  

a symmetric  tensor  which  can be w r i t t e n  as the   de r iva t ive   o f  some 

po ten t i a l   func t ion   g (  sij , i j  ) 

1 
mn mn i j  

1 

Therefore,  
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As i n   t h e   i n f i n i t e s i m a l   t h e o r y   o f   p l a s t i c i t y   t h r e e   t y p e s  of behavior 

a re   pos tu l a t ed   fo r   t he   ma te r i a l .  These are: 

Loading,  during  which leP 
i j  # 0 and i s  given by (11.22) and 

f = K , K # O , -  1 mn 
a smn 

Neutra l   loading   for  which = 0 , .and 

f = K , K = O , -  
a f  1. 
1 s = o  mn 

a smn 

(11.23) 

Unloading  from a p l a s t i c  state during which 'OF = 0 , and 
'i j 

f = O , K = o , -  
mn 

o r  (11.28) 

In   genera l  the measure  of  hardening K is a func t iona l  of t h e  

e n t i r e   h i s t o r y  of deformation  and  temperature. A representat ion  of  K 

for  isothermal  deformations is  

- 1  1 P 1; l * P  ) 
Eij Y h = h (  sij, ij '  Ei j  (11.30) 

For  an i n v i s c i d  continuum h is  independent  of the t ime  scale  and 

homogeneous of  degree one i n  s , and lop Then i n  view  of 

(11.22) K can   be   wr i t ten  as 

1- 
i j  'ij * 
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The i n i t i a l   y i e l d   s u r f a c e  i s  only a funct ion  of  stresses, and f o r  

i n i t i a l l y   i s o t r o p i c  materials it is a func t ion   of   invar ian ts   o f   s t ress  

t e n s o r .   I n   p a r t i c u l a r  it has  been  found  that   for metals hydros t a t i c  

s t r e s s  of t h e   o r d e r  of t h e   y i e l d  stress does  not   affect   the   yielding  and 

plast ic   deformation [57]. T h e r e f o r e ,   t h e   i n i t i a l   y i e l d   s u r f a c e   c a n   b e  

w r i t t e n  as 

f(J2, J ) = k 3 (11.33) 

where k is  a constant  and J and J are the  second  and  third 

inva r i an t s   o f   t he   dev ia to r i c .  Cauchy s t r e s s   t e n s o r  T 

2 3 

i j  

J = -  1 T I  T! l j  l j  . (11.34) 

Exper imenta l   ev idence   ind ica tes   tha t   for   meta ls   the   y ie ld   func t ion   can  

be  approximated  by von Mises y i e l d   c r i t e r i o n  [43, 581 which i s  

Equation (11.20) shows t h e   s e t  of all loading   sur faces .  The shape 

of these   su r f aces  depends  on t h e   s c a l a r   f u n c t i o n a l  K . I n   t h e  

in f in i t e s ima l   t heo ry  of p las t ic i ty   d i f fe ren t .mathemat ica l   models ,  

called  hardening  rules,   have  been  proposed  to  approximate  the  form 
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hardening  rules  can  be  used  in  the  large  deformation  theory  also.  One 

of   these  is  the   i so t ropic   hardening  l a w  which asserts that the  shape  of 

t h e   y i e l d   s u r f a c e s  a t  h ighe r   s t r e s ses  i s  a uniform  expansion  of  the 

in i t ia l   y ie ld   sur face .   Mathemat ica l ly  th i s  can  be  wri t ten as 

For von Mises yield  condi t ion  the  isotropic   hardening l a w  i s  of   the 

where (11.39) 

Two simple  measures  of  hardening  have  been  proposed  in  the 

in f in i t e s ima l   t heo ry  of p l a s t i c i t y  [Si']. The first one s t a t e s  that  K 

is  a funct ion  of   plast ic   work,   and  the  second  s ta tes   that  it i s  a 

funct ion  of  the so -ca l l ed   equ iva len t   p l a s t i c   s t r a in .  It i s  assumed 

i n  t h i s  work t h a t   t h e s e  two measures  can be used   a l so   i n   t he   l a rge  

deformation  theory. If the  increments   of   plast ic  work and equivalent  

p l a s t i c   s t r a i n   a r e   d e f i n e d  by 

1 1 P  dWp = S i j  d E i j  9 

and 1 

(11.40) 

( 11.41)  

r e spec t ive ly   t hen   t he   func t iona l  K in   (11 .31)   can   be   wr i t ten  as 

l&:: 

K = F( J IJ dWP' (11.42) 
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YIELD 

FIG. I t - 2  ISOTROPIC  HARDENING 

FIG. E-3 HARDENING CURVES FOR SIMPLE TENSION 
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and 

In t h e   s o l u t i o n  of problems the  forin of the   func t ion  K as determined 

from some experiment ,   e .g . ,   s imple  tension  tes t  i s  used  (see  Figure 11.3). 

Another const i tut ive  assumption  which  s implif ies   the  general   theo-  

r y  appreciably is Drucker 's   normality  rule which asserts t h a t   t h e  

increment of p l a s t i c   s t r a i n   v e c t o r  i s  normal t o   t h e   y i e l d   s u r f a c e .   T h i s  

requirement  indicates t h a t  t h e   p l a s t i c   p o t e n t i a l  g i n  (11.24) i s  t h e  

same as f , and equation (11.25) becomes 

where f o r   t h e  von Mises y i e l d   c r i t e r i o n  

Since 

PO T' = - ( z  z "-6 1 1 1 
mn Po m , i  n , j  3 mn IJ 

c . . )  Si j  , 

Therefore, 

(11.46) 

where 
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and 

l c  = 2 Em - 6mn 1 
mn 
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11.4 St re s s -S t r a in   Wla t ions  

The r e l a t ionsh ip  between the stress and e l a s t i c   p a r t  of s t r a i n  can 

be wr i t t en  as 

where 

Ai jk2  = x d i j  Csk2 + Csj2 + 6 Csi2). 
j k  

During  loading 

1 a K  a( E .  .>  . 1 P  
1 d( s .  .) = 1p 

a sij 1 J  a cij 1J 

(11.51) 

Subs t i t u t ion  of (II.SO>, (11.211, and (11.25) i n t o  (11.521, r e s u l t s   i n  

2f 1 
1 Artuv  a( Euv> 

a 'rt as; = af a f  
1 (F 1 Ai jk2  > a K  + - (11.53) 

a 'k2 a 'k2 a sij 

Hence the   p l a s t i c   s t r a in   i nc remen t  (11.44) becomes 

where 
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Subs t i tu t ion   of  (11.541, and (11.211,  into  (11.50)  gives 

a( s . . )  = c 1 
1J i j p s  

where 

C - b  A = A  -1 a f  ar 
i j p s   i j p s  

" 

*ijkfi uvpq 1 1 
a 'uv a 'kfi 

(11.56) 

(11.57) 

a K  ' 

The de r iva t ive  - i n  (11.55) depends  on t h e  form of harden- 

P s  
a'&' 

ing  parameter K . For work hardening  (11.42)   this   der ivat ive  can  be 

w r i t t e n  as 

a K  lS a K  

a & m n  
a$ 

" - 
1 P  mn- 

- can  be  determined  from a simple  tension tes t  where it w i l l  b e   t h e  
a$ 
s lope  of   the  hardening  curve  F '   (see  Figure II.3(a) ) . Therefore 

(11.59) 

For s t r a in   ha rden ing  (11.43) t h e   d e r i v a t i v e  - can   be   wr i t ten  as a K  

a'&' 
i j  

a K  1 a? 
a & m n  

mn a 8  
" 

1 P  -H' s - (11.60) 

where H' is t h e   s l o p e  of t h e   s t r e s s - p l a s t i c   s t r a i n   c u r v e   i n   s i m p l e  

tens ion   ( see   F igure   I I .3 (b)  ) . The relat ionship  between d$ and 

can  be  determined as fo l lows .   Subs t i tu t ion  of (11.44)  i n t o  

(11.41) r e s u l t s   i n  
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= [% (a71 1 - 2 a f  af ]2 

a sij a sij 1 

from which dx c a  be found 

(37 = 

(11.61) 

(11.62) 

Subs t i tu t ion  of (11.62)~ (11.44)¶ (11.47) and (11.40) i n t o  (11.60) 

gives 

where 
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11.5 Const i tut ive  Equat ions  in   Curvi l inear   Coordinates  

The form invariance of t he   cons t i t u t ive   equa t ions   i n   Ca r t e s i an  

and   or thogonal   curv i l inear   coord ina tes   d i scussed   in   sec t ion  1.5 also 

holds f o r  i n v i s c i d   p l a s t i c   m a t e r i a l s   w i t h   c o n s t i t u t i v e   r e l a t i o n  (11.22). 

Subs t i tu t ion   of  (11.21) i n t o  (11.50) gives . 

S i n c e   t h i s  i s  a n   i s o t r o p i c   r e l a t i o n s h i p   t h e   c o r r e s p o n d i n g   e q u a t i o n   i n  

curv i l inear   coord ina tes   in  terms of   Cartesian components would be 

(11.66) 

where t h e  asterisks over   the   t ensors   ind ica tes   Car tes ian  components. 

Due t o   t h e   l i n e a r   r e l a t i o n s h i p  between d l P  €ij and - i n  (11.44) 

then 

1 a s  
i j  

is  a s c a l a r  and   can   be   wr i t ten   in  terms of  the phys ica l  components 

of t h e   t e n s o r s   i n  (11.53). Therefore ,   subs t i tu t ion   o f  (11.67) i n  

( 11.65) gives 

(11.68) 
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11.6 Approximate Consti tutive  Equations 

The time rate of change o f   s t r e s s  and s t r a i n  's and 'E 
i j  i j  

can be wr i t t en  as 

2- 1 - s -  uv  suv S 

l; = lim ( At ) = l i m  (-1 uv 
uv At-  At* A t  

2E - EUV 
1 

= l i m  ( At UV CUV ) = l i m  (-) 
€llV At- At- A t  

(11.69) 

The s t ress-s t ra in   re la t ionship  (11.56)   can  be  approximated  by  subst i tu-  

t i n g  suV for d(  suv) and Euv fo r   d (  cUv) . Then 
- 1 1 

Subs t i tu t ion  of (1 .35) ,   and (1.47) i n t o  (11.71) results i n  

- 5 ( 2  'kR - k,m R,n mnrs u , r   v , s  uv z c  Z z > E  

P O  

The cor responding   re la t ion   in   curv i l inear   coord ina tes  i s  

(11.72) 

where t h e  asterisk ove r   t he   t enso r s   s ign i f i e s   t he   phys i ca l  components. 

The phys ica l  components of the  displacement   gradients   can  be  wri t ten as 

k 
(no sum). (11.7'4) 
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If an in i t ia l ly   o r thogonal   convec ted   curv i l inear   coord ina te   sys tem i s  

used,  then 

Subs t i t u t ion  of (11.74) and (11.75) i n t o  (11.73) 

(s ) %  = kR 

gives  

I"0 

For s impl i c i ty   de f ine  

S kR 

'rs 

" 

= ( s  )* kR 

= (Ers)* 

and 

then  equation ( 11.73 becomes 

'kR = cl&,rs E rs 
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CHAPTER 111: LARGE DEFLECTION ANALYSIS OF ELASTIC-PLASTIC 

AXISYMMETRIC SHELLS OF REVOLUTION 

Many inves t iga to r s  have t r i ed   t o   cons t ruc t   gene ra l   non- l inea r  

bend ing   t heo r i e s   fo r   she l l s .  The problem is  not  yet   resolved  complete- 

l y  and cer ta in   fundamenta l   ques t ions   l ike   the   reduct ion   of   the   genera l  

th ree-d imens iona l   cons t i tu t ive   equat ions   for   th in   she l l s ,   o r   the   deve l -  

opment of a general   two-dimensional   theory  present   dif f icul t ies .  

Indeed  there i s  no t   ye t  a un ique   de f in i t i on   fo r  a s h e l l   t y p e  continuum. 

A complete  review  of  the  developments i n   t he   non l inea r   t heo ry   o f   she l l s  

is  out  of  the  scope  of th i s  work,  however, some major  contributions 

w i l l  be mentioned. 

Two different   approaches  have  been  fol lowed  in   the  construct ion 

of   l inear  and nonl inear   bending   theor ies   o f   she l l s .  The f irst  method 

consists  of  reducing  the  general   three-dimensional  equations  for 

s h e l l s   i n  which  one  geometric  dimension i s  much smal le r   than   the   o ther  

two.  Synge and  Chien [61] deve loped   an   i n t r in s i c   t heo ry   fo r   e l a s t i c  

she l l s ;   t hey   t r ea t ed   l i nea r   cons t i t u t ive   equa t ions .  Green  and  Zerna 

[62], and Naghdi [ 611 have expressed the non-linear  kinematics  in terms 

of   d i sp lacements   and   t rea ted   l inear   e las t ic   cons t i tu t ive   re la t ions .  

A t heo ry   o f   e l a s t i c  shells w i t h  small deformations  and  non-linear 

e las t ic   response  was constructed by Wainwright E631. Naghdi and Nord- 

gren [64] developed a par t icu lar   theory   subjec t   to   Ki rchhoff ' s   hypothes is ;  

they   cons ider   l a rge   d i sp lacements   and   non- l inear   e las t ic   cons t i tu t ive  

equations.  Recently  Green, Laws, and Naghdi [651 have  constructed non- 

l i n e a r  thermodynamical t heo r i e s   fo r   rods  and shells us ing   t he  
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three-dimensional  theory  of  classical  continuum  mechanics. 

In  the  second  approach  the  shell is considered  as a Cosserat 

surface,  i.  e. , a two-dimensional  continuum to each  point  of  which a 

director  is  assigned.  The  kinematics  of a shell  considered  as a 

Cosserat  surface  was  given  by  Ericksen  and  Truesdell [ 661. Special 

theories  in  which  the  director  is  identified  with  the  inextensional 

normal  to  the  surface  and  which  remains  normal  after  deformation, 

corresponding to the  usual  Kirchhoff's  hypothesis,  were  developed  by 

Sanders [ 671 , Leonard [68] and  Koiter [ 69 I. A general  theory  of a 

Cosserate  surface  was  constructed  by  Green,  Naghdi,  and  Wainwright  [TO] 

trho  discuss  both  the  kinematics  and  the  constitutive  equations  for  the 

surface.  Green,  Naghdi.  and  Osborn  have  developed  the  elastic-plastic 

constitutive  equations  for a Cosserat  surface [541 e 

The  equations  for  the  non-linear  analysis  of  shells  of  revolution 

can  be  derived  from  any  of  the  above  theories. A set  of  equations, 

which  have  been  widely  used  by  investigators  in  solving  practical 

problems,  have  been  derived  by E, Reissner [711 for  linearly  elastic 

shells  of  revolution.  He  assumes  Kirchhoff's  hypothesis  and  his 

development  is  restricted to infinitesimal  deformations  but  large 

displacements. 

The  importance  of  nonlinear  analysis  of  shells  of  revolution  was 

discussed  before.  In  practical  problems  closed  form  solutions  for 

such  cases  do  not  exist  and  resort  must  be  made  to  numerical  techniques. 

In  this  chapter  after a review  of  the  numerical  methods  of  solution 

of  shells  of  revolution,  shallow  caps,  and  circular  plates,  the  incre- 

mental  approach  developed  in  Chapters 1 and 2 is  specialized  for  the 

large  deflection  elastic-plastic  analysis  of  axisymmetrically  deformed 

thin  shells  of  revolution.  The  formulation  is  suitable  for  the  direct 
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numerical methods of ana lys i s  of variational  problems, and i n  Chapter 

4 the problem w i l l  be   solved  by  the  f ini te   e lement   technique.  
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111.1. Review of Numerical  Methods 

In  this  section  the  numerical  methodz  of  analysis  of  shells  of 

revolution  are  considered.  Three  forms  3f  this  structure,  namely,  circular 

plates,  shallow  spherical  caps  and  axisymmetrie  shells of revolution  are 

discussed  separately.  The  division  in  presentatzion  is not intended to show 

the  diversity  of  the  general  methods  used  in  analyzing  the  nonlinear  behavior 

of  these  structures,  but  rather  it  is  dictated  hecause 05 the  existence  of 

rather  vast  amount  of  literature  for  each  case. 

111.1.1. Axisymmetric  shells of revolution 

Several  numerical  methods'such  as  finite  dif€erence,  invariant 

imbedding,  and  finite  element  techniques  have  been  used  ior  the  large  de- 

flection  bending  and  membrane  analysis of shells of revolution.  Finite 

difference  method  with  iterative  schemes  has been used  by  some  investigators 

for  linearly  elastic  shells  of  revolution [72-761. Witmer,  et  al., [77] 

used  finite  difference  together  with  a  lumped  parameter  technique  for 

elastic-plastic  materials.  They  used  von  Mises  yield  eondition  and  the 

associated  flow  rule  of  plasticity.  Inconsistencies  arise  in  their  method 

in  the  plastic  range  unless the number  of  lumped  layers in the  thickness  of 

the  shell  is  large. A combination of finite  difference  method  and  Newton- 

Raphson  iterative  scheme  was  used  by  Stricklin,  Hsu,  and  Pian [78]. 

They  utilized  a  special  theory  of  plasticity  with  the  Tresca  yield  condi- 

tion,  In  general,  the  finite  difference  method is difficult  to  use  for 

certain  boundary  conditions  and  since  the  variation  of  shell  geometry  and 

material  properties  must  be  expressed  analytically  the  method  loses  its 

value  when  these  variables  cannot  be  easily  represented  analytically  or 

by  curve  fitting. 
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The  invariant  imbedding  technique  which.  reformulates  the  boundary 

value  problem  into  an  initial  value  problem  Wac  appliec'  by  Kalnins  and 

Lestingi [79 ]  for  elastic  shells  of  revolution.  The  instabilities  in  this 

numerical  technique  have  been  pointed  out  by  Fox [80]. The  disadvantage 

of  the  method  is  that  instead of one  problem  a  family  of  problems  should 

be  solved [79,81]. 

The  finite  element  method is capable of hacling  various  boundary 

conditions  and  sharp  variations  or  jumps  in  the  geometrical  and  material 

properties.  The  displacement  formulation of the  finjte  element  method  has 

been  used  for  thc  post  buckling  analysis  of  elastic  cylindrical  shells  by 

Schmidt,  BogneL  and  Fox [32] .  They  used  ar  iterative  scheme  and  compatible 

elements  in  the fom of  cylindrical  strips.  Stricklin,  et  al. 182,831 have 

treated  the  symmetric  and  asymmetric  large  deflections of elastic  axisym- 

mecric  shells.of  revolution.  Their  incremental  scheme  is  not  consistent 

because  strains  and  stresses  are  expressed  in  two  different  configurations 

of the  shell,  Navaratna, et ale, [84 ]  solve  the  linear  bifurcation  buckling 

of elastic  shells  of  revolution  by  superposing  asymmetric  buckling  modes )n 

the  axisymmetric  prebuckling  deformations. 

The  nonlinear  membrane  analysis of elastic  shells  of  revolution 

has  been  considered  by  many  investigators.  The  case of small deformations 

and  large  rotations  has  been  treated  by  asymptotic  expansions 185,891, 

asymptotic  expansion  with  the  %it2  method [881, numerical  integration  with 

an  iterative  scheme [ 8 6 . ] ,  and  asymptotic  integration [ 8 7 ] .  The  problem of 

large  deformations  and  rotations  has  been  solved  by  matched  asymptotic 

expansion [90,91]. It is  found  in [9Oj that  the  circumferential  mem- 

brane  force  in  a  toroidal  shell  is  remarkably  different  when  both  large 
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d e f o w a t i o n s  and r o t a t i o n s  are considered. A .general non-li.naar membrane 

theory  of   shel ls  which i n c l u d e s   t h e   e f f e c t  of f i n i t e   s c r a i n s   h a s   b e e n  

derived by  Rajan [92] .  Salmon [ 9 4 ]  ha5  t rea ted  :the membmne s o l u t i o n  of 

la rge   p las t ic   deformat ions  o f  a c y l i n d r i c a l   s h e U .  He ut.i-15zed  both  the 

incremental  and  the  deformation lam of p las t . i c i . ty  and -observed t h a t  as 

t he   l eng th   o f   t he   cy l inde r   i nc reases   t he   r e su l t s   o f   . t he  two theor ies   agree  

r a t h e r  well. H i s  r e s u l t s   a l s o   c o n f i r m   t h e   v a l i d i t y  oE the  approximate 

method used  by Weil [93]  i n   t h e  case of  long  cyl inders .  

II101.2.  Shal1o.t.r caps 

The ana lys i s  of sphericzl   caps  has   been  the  subject  of a g r e a t  

number of   inves t iga t ions .  The nonlinear  behavior of thSis s t r u c t u r e  is 

s e n s i t i v e   t o  several fac tors   such  as the  geometrical   parameter 

A2A p where v is the   Po i s son ' s   r a t io ,  h is t h e  rise and t 

is  the   th ickness  of t h e   s h e l l ;   t h e   t y p e  of a p p l i e d   l o a d ;   t h e   i n i t i a l  im- 

per fec t ions ;  and t h e  ma%erial property.  The i n f l u e m e  of t h e s e   f a c t o r s  

on t h e   p a t t e r n  of  displacements  and  buckling i s  SO .significant t h a t  up t o  

now t h e r e  is no complete  agreement  between the  theoretxiaal  and experimental 

r e s u l t s .  The non l inea r   d i f f e ren t i a l   equa t ions  of sha l low  she l l s  were 

derived by  Marguerre [ 9 5 ] .  Also, E. Reissner  gives a set of   equat ions  for  

shallot7  caps [ 9 6 ] .  In   both  cases   the  deformations are consrtdered t o   b e  

i n f i n i t e s i m a l   b u t   d e f l e c t i o n s  are f i n i t e .  

The  problem  of f in i t e   d i sp l acemen t s  and buck1,ing of  shallow 

spherical  caps  under  uniform  normal  load mas invest.igace?  both  experi- 

mentally and theo re t i ca l ly   by  Kaplar. and Fung i n  1954 [97']. In the  theo-  

r e t i c a l  method axisymmetric  deformations were assumed and a per turba t ion  

technique vas used   wi th   the   cen t ra l   .def lec t ion  as the par*mbation  parameter. 

57 



Great  discrepancy  was  noted  between  the experimental and  t.hearetica1  buck- 

ling  loads  for  values  of X > 4 .  Since  th&  time a great  deal of effort 

has  been  made  by  many  investigators  to  closf  the gap between  the  experi- 

mental  and  the  theoretical  results.  In  the  early  researches  the  mode  of 

deflection  was  assumed  to  be  symmetric  and  buokl~kng was thought  to  occur 

by  a  symmetric  snap  through  process..  The.results of sueh investigations 

[98-1011 do  not  agree  both  with  the  experimental  results [97] and  also 

among  themselves  for X > 4 ,  although  they  all  use  the  same  set  of  dif- 

ferential  equations [95]. Among  the  various  numerical  procedures  for  the 

analysis  of  axisymmetric  large  deflection  of unlfomly loaded  spherical 

caps  the  integral  method  of  Budiansky [loll, power  series  method  of 

Weinitschke [102], the  residual  method of Thurston [103], and  the  direct 

iterative  technique of Archer [I041 give  the  same  upper  bound  solution  for 

the  buckling  load.  Lower  bound  solutions  for  the  buckling  load  were  given 

by  Reiss,  Greenberg,  and  Keller [98] using  power  series  expansion  and  by 

Thurston [103]. Budiansky [loll and  Thurston [lo31 studied  the  effect  of 

initial  imperfections  on  the  axisymmetric  buekling  of  uniformly  loaded 

shallow  spherical  shells.  Budiansky,  who  used  smooth  Imperfections,  con- 

cluded  that  €or X > 5 the  inclusion  of  imperfections  cannot  close  the 

gap  between  the  experimental  and  theoretica,  results.  Thurston,  using 

rough  imperfections,  points  out  that  the  inclusion of imperfections  in 

the  analysis  of  caps  is  important.  The  experimental resu2ts by  Krenzke 

and  Kiernan [105], on  highly-  accurate  aluminum  specimens,  wh.ich  show  higher 

buckling  loads  than Kaphn and  Fung's  experiment support Thutston"s  point 

of  view. 

Since  the  theoretical  results  on  the  symmetzical  buckling  of 

uniformly  loaded  shallow  spherical  shells  do  not  agree wit+-, experimental 
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evidence  for X > 5 it was  concluded  by  some  investigators  that  the  process 

of  buckling  may  be  unsymmetric  although  the  in2tial  an?  final  configurations 

are  symmetric.  Weinitschke [lo61 superimposed  small  asymmetric  deflections 

on  finite  axisymmetric  displacements  and  obtained  buckling  loads  which  are 

close to experimental  values  of [97]. Huang [lo71 solved  the  variational 

formulation  of  the  unsymmetric  snap  througi.  buckling  numerically  and  ob- 

tained  buckling  loads  higher  than  the  experimental  results  in [97] but 

1 0 ~ r  than  the  axisymmetric  theoretical  calculations.  His  results  are 

close t o  the  experimental  buckling  loads  of  Krenzke  snd  Kiernan [105]. 

Contrary to uniform  or  partially  uniform  loading,  the  theoretical 

and  experimental  results  of  shallow  spherical  caps  under  concentrated  load 

agree  rather  well [108-1121. It is  found  that,  unlike  the  uniformly  loaded 

cap,  the  snap  through  occurs  at  very  high  loads.  The  experimental  results 

in [111] indicate  that  symmetric  snap  through  occurs  for X < 6.5 and 

asymmetric  buckling.occurs  for X > 10.2. The  theoretical  study  of  spher- 

ical  caps  under  concentrated  load  has  also  revealed  the  fact  that  buckling 

of  the  bifurcation  type  may  occur  even  before  snap  through  happens [ U O -  

1141. 

Experimental  results  of  uniformly  loaded  spherical  sandwich 

sha11ow  shells  by  Lin [115] emphasize  the  importance  of  including  the  non- 

linear  behavior of material  in  the  buckling  analysis. 

111.1.3 Circular  plates 

The  governing  differential  equations  €or  the  bending  analysis  of 

infinitesimal  deformation  but  finite  deflections of thin  elastic  plates  were 

derived  by  von  Karman [116]. For  the  case  of  axisymmetrically  loaded  and 

supported  circular  plates  the  von  Karman  equations  reduce to two coupled 
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second  order  non-linear  ordinary  differential  equations.  Corresponding 

equations  for  circular  plates  can  be  obtained  by  simplifying E. Reissner's 

equations  €or  axisymmetric  shells  of  revolution [71]. 

Two approaches  have  been  followeci  for  the  solution  of  the  differ- 

ential  equations  of  large  displacement  bending  analysis of elastic  circular 

plates.  In  the  first  approach  the  von  Karman  equations  are  further  sim- 

plified  and  then  solved  exactly.  This  method  vas  used  by  Berger [117], 

who  neglected  the  strain  energy  due  to  the  second  invariant of middle 

surface  strains,  and  by  Goldberg [118], who  neglected  the  Gaussian  curva- 

ture in the  compatibility  equation  for  membrane  strains.  Both  Berger  and 

Goldberg  arrived  at  a  set  of  uncoupled  equilibrium  equations.  Berger's 

simplification  was  later  used  for  the  vibration  analysis  of  circular 

plates [119] and  for  the  problem of circular  plates  on  elastic  founda- 

tions [120]. 

In  the-other  approach  approximate  solutions  have  been  sought 

for  von  Karman's  or E. Reissner's  equations  by  different  mathematical 

methods.  Power  series  expansion  method,  where  the  Tariables  are  ex- 

pressed  in  powers  of  the  radius  from  the  center  of  the  plate,  was  used 

by  Way [121]. Bromberg [122] used  a  perturbation  method  by  expanding 
R 113 

the  variables  in  terms of the  perturbation  parameter k = 

where  R,  and  h,  are  the  radius  and  thickness of the  plate,  respectively, 

p  is  the  intensity  of  the  applied  uniform  load,  and E and v are  the 

Young's  modulus  and  Poisonn's  ratio,  respectively. A s  pointed  out  in [122], 

the  perturbation  method  gives  correct  results  for k 1, and  the  power 

series  method  for 1 " < k < 15. For  larger  values  of k, however,  boundary 

layer  effects  become  important  near  the  edge  of  the  plate  and  the  above  two 

methods  fail  to  give  accurate  results.  In  such  a  case  a  boundary  layer 
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solution,  employing  asymptotic  expansion,  has  been  used.  This method was 

proposed  and  used fo r   t he   so lu t ion   o f   t he   p rob lem  o f   c i r cu la r   p l a t e s  by 

Frfedrichs and Stoker [123] and was la ter  modified  by Bromberg [122]. Hart 

and Evans [124; have  applied  the method of   asymptot ic   expansion  for   the 

annular   p la tes .  Keller and Reiss [125] app1ied.an i terative scheme t o   t h e  

boundar)   l ayer   so lu t ion   in  [123]. Their method t o g e t h e r   w i t h   f i n i t e   d i f -  

ference  equations  have  been  used  by Hamada and  Seguchi [126] f o r   t h e  

ana lys i s   o f   annular   p la tes .  

The l a rge   de f l ec t ion   ana lys i s   o f   e l a s t i c -p l a s t i c   c i r cu la r   p l a t e s  

has  been  considered  by several inves t iga tors .  The order  of  geometric non- 

l f n e a r f t y  i s  t h e  same as i n  von  Karman's theory. For t h e  material non- 

l i n e a r i t y   d i f f e r e n t   c o n s t i t u t i v e  laws have  been employed. R i g i d   p l a s t i c  

materials were ana lwed  by Sawczuk [127] f o r  s t a t i c  loads and  by  Jones f o r  

dynamic  and impulsive  loads [128,129]. Deformation  theory  of   plast ic i ty  

t7as used  by  Ohashi  and Murakami [130,131] f o r  e las t ic  p e r f e c t l y   p l a s t i c  

materials. The r e s u l t s   o f   t h e i r   c a l c u l a t i o n s   f a l l   w i t h i n   t h e   r a n g e  of 

Budiansky ' s   c r i te r ion   for   the   phys ica l   va l id i ty   o f   the   deformat ion   theory  

of p l a s t i c i t y  [132] and  the  comparison  Jf   their   theoret ical  and  experimen- 

t a l  r e s u l t s  is  sa t i s fac tory .   Us ing   the   deformat ion  law o f   p l a s t i c i t y  

Naghdi [133] and  Ohashi  and Kamiyti [134] ana lyze   t he   l a rge   de f l ec t ions  of 

c i rcu lar   p la tes   wi th   hardening  materials, A lumped parameter method ~7as 

employed by  Crose  and Ang [.135], who d i v i d e   t h e   p l a t e   t h i c k n e s s   i n t o   t h r e e  

l a y e r s .  The cop and  bottom  layers are t h i n  and are i n  a state of  plane. 

stress, and the   n idd le   l aye r   has   i n f in i t e   shea r   s t i f fnes s   and  no r e s i s t a n c e  

t o  bending. They use f101.7 t heo ry   o f   p l a s t i c i ty .  

The observation common i n  a l l  of t h e  above   i nves t iga t ions   on   t he  

l a r g e   d e f l e c t i o n   o f   e l a s t i c - p l a s t i c   c i r c u l a r   p l a t e s  i s  t h a t   t h e  effect of 
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membrane € o r c e s   i n   t h e   p l a s t i c   r a n g e  is sfgnffiaane even f o r  r e l a t i v e l y  

small displacements, and tha t   the   load   car ry ing   capac i ty  of t h e   p l a t e s  is  

more than   tha t   g iven  by bending  collapse  load. 
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111.2  The  Strain-Displacement  Relations 

The  coordinate  system  on  the  middle  surface  of a shell  of  revo- 

lution  in  configuration 1 is  chosen to be  orthogonal  and  coincide  with 

the  principal  lines  of  curvature  (see  Figure 111.1). It is  assumed 

that  the  deformation  of  the  shell  follows  Kirchhof f ' s  hypothesis  which 

asserts  that  the  unit  normal  vector  to  the  middle  surface  in  configura- 

tion 1 remains  normal to the  middle  surface  of  the  shell  in  configura- 

tion 2 and  that  its  length  does  not  change.  Then  the  convected  form 

of  the  coordinate  system x remains  orthogonal  and  coincides  with  the 

principal  curvature  lines  in  configuration 2 for  axisymmetrically 

loaded  and  supported  shells  of  revolution. 

i 

It is  shown  in  Appendix E that  the  strain-displacement  relations 

for  axisymmetrically  deformed  shells  of  revolution  when  Kirchhoff's 

hypothesis  prevails  are 

1 2 x2 w 
E ss = es + ?  es + T +  ~ [ ( w  +A> + 

SYS Rs 
e 
S 

w n 
- RS + es(wsys ++  S -x<wn - R  S > I  + 

C2[ + -  > + 2 ( w s y s  + - ) + 
w n 1 w n 2  

Rs SYS Rs RS 

1 - ( w  - -  2 nys 

w 
121 y 

RS 

and 
1 2  

88 2 8  E = ee + - e + <[wr(l + eo> + 

2 r l  w 

R 2 r  < [ - + - w 2  ] Y 

(111.1) 

(111.2) 

where 
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ee =.- (u cos+ + 1.7 s i n + )  , 1 
r (111.3) 

e = u, T.7 
S S + R '  (111.4) 

RS 
s '  (111.5) 

S 

x=-" U 1-7, 

l + e  

(1 + 2es + e + x)  On = cosw - 1 = S 

2 112 - 1  Y 
(111.6) 

S 

ws = s.inw - X 
2 112 9 (1 + 2es + es +x) 

and 
us cos+ + wn sin4 

w =  r r (111.8) 

€SS 
and a r e  t he  phys ica l  components of meridional  and  circumfer- 

e n t i a l   s t r a i n   t e n s o r .  u and 1.7 are t h e   p h y s i c a l  components  of 

meridional  and  normal  displacements  of  the  middle  surface  of  the  shell  

(see Figure  111.2).  

If t h e   s h e l l  i s  th in ,   express ions  (111.1) and  (111.2)  can be 

s impl i f i ed   fu r the r  by assuming t h a t  C2 0 . Then 

1 2  2 w n 
ss S 

S 

and 

ee 
'e 

Eee = ee + 1 e2 + <[wr(l + ee l  + -I . 2 e  (I11 .lo) 

Also f o r   t h i n   s h e l l s  whose deformat ions   a re   in f in i tes imal   such   tha t  

2 e e  << ee , and e2 << e , but whose r o t a t i o n s   a r e   l a r g e   w i t h   t h e  

r e s t r i c t i o n   t h a t  x" << xy  n > 2 , . t h e   s t r a i n   d i s p l a c e m e n t   r e l a t i o n s  

S S 
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(111.9) and  (111.10)  can  be  simplified s t i l l  f u r t h e r .  Then 

1 
2 1 2 2  
” 

(1 + 2e + es + x) 1 - z ( 2 e s + e  + x )  
S S (111.11) 

(Jl S = x - x e s  ¶ (111.12) 

and the  s t ra in-displacement   equat ions become 

and 

vh er e 

E = E s + 3 K  
ss s ’  

2 
E. = e +x- 
S s 2  

( 111.13) 

( 111.14) 

( 111.15) 

(111.16) 

= ee (111.17) 

( 111.18) 

K and K are the  meridional   and  tangent ia l  change of curvatures .  

The s t r a i n s  E and E can  be  wri t ten as t h e  sum of a l i n e a r  and a 

non-l inear   par t  

S 8 

ss 88 
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where t h e   l i n e a r   p a r t  is  

and the  non-l inear   par t  is 

K O  
S 

K O  . e  

> (111.21) 

(111.22) 

The l i n e a r  and non-linear components of the   curva ture   vec tor   a re  

(111.23) 

ana 
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111-3.  The  Constitutive  .Equations 

The  symmetry  of  deformations  and  Kirchhoff’s  hypothesis  require 

that  ‘sa3 = 0, sa3 = 0, ‘Ei3 = 0, and = 0. If  the  strains 

and E are  not  assumed  to  be  zero  but  .are  such  that E << 1, << 1 

and << ‘E E << E then  the  strain-displacement  relationships 

of  Section  111.2.  are  still a good  representation of the  kinematics of 

1 

33  33 

33 a@’ 33 aB 

deformation  of  the  shell. If the  shell  is  thin,  then  it  can  be  assumed 

that  1s33 = 3 ,  and s = 0. With  these  restrictions  on  stresses  and 33 

strains  the  constitutive  equations (11.78) can  be  written  as 

S - 
aB - C&yS “VS + %B33 €33 

(111.25) 

and 

s33 
- 
- c;3ys “yS + c;333  &33 

Solve  (111.26)  for &33 and  substitute  in  (111.25) to get 

(111.26) 

(111.27) 

(I11 e 28) 

111.3.1.  Strain  hardening  materials 

For  materials  which  obey  the  strain  hardening  law  (11.43)  the 

stress  strain  relations  (11.74)  are  reduced  to 

(111.29) 

along  the  principal  directions  of  the  shell. The transformation  coefficients 
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in (111.29) are  calculated from (111.28). These  are 

- A3 E 2 
cllll = - - r5 + (1-5)S2 1 Y 

- B3 E 2 
c2222 = - - r5 + (1-5)S1 1 Y 

B R  

A R  

where 

R = (1-v ) 5  + ( 1 4  (S12 + 2vs1s2 + s2 ) 2  2 

(111.30) 

(111.31) 

(111.32) 

where g and are  the  metric  tensors  associated  with  the  convected 

orthogonal  curvilinear  coordinates of the  shell  in  the  initial  state  and 

configuration 1, respectively.  On  the  middle  surface of the  shell  they 

coincide  with Tij and a respectively. Also 

-i j 
gij 

ij ' 

s l = m %  , s 2 = m  b , a 2 = -  e 2 

a +b 2 2  , (111.33) 

1 

1 
a = Bllll sll + B1122 IS 22 ' 

= B2211 sll + B2222 22 ' Is 

e2 = a 1 Sll + b 1 s22 Y 

and 

(111.34) 

(111.35) 

Since  the  curvilinear  coordinate  axes  are  convected,  then 'C can  be aB 
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d i r e c t l y   e x p r e s s e d   i n  terms of metric tensors .  In p a r t i c u l a r  

- 
- 811 

-11 
3 (111.36) 

and s i m i l a r l y  

-2 2 
(111.37) 

Subs t i tu t ion  of (111.36),  (111.37)  and  (11.49) i n t o  (111.35) r e s u l t s   i n  

1 

1 
2 1 + 2 Ell 

Bllll 1 + 2 E22 

- -  - 
Y 

- - 1 
3 y  B1122 - B2211 

- " (111.38) 

and 
I 

2 1 + 2 &22 
- 

B2222 - - 1 +  2 &" 
1 

The re la t ionship   be tween  the   t ensors  's and ~~j i n  convected 

coordinates is [31] 

i j  

(I11 39) 

If these  stresses are expressed i n  terms of the i r   phys i ca l  components 

(similar to   equa t ions  (D. 9)  and (D. 12) i n  Appendix D) t h e n .  (111.39)  with 

m = n = 1 becomes 

(111.40) 

Subs t i tu t ion  of (111.36),  (111.37)y  and  (11.49)  into  (111.40)  gives 
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1 9 1  - - q 1 + 2 E22 ‘11 

Similarly 

1 
s22 

- - 

In view of equations (111.36) to (111.42) then 

(I11 e 41) 

(111.42) 

(111.43) 

1 1 
A (‘11 - T ‘22) B (‘22 - z ‘11) , s2 = - - - Y (111.44) ’1 - aB 

- _  
ClA 

(J (J 

1 )1/4 a = (  2 2 (111.45) 
+ s2 

and 
- 2 2 o = ‘  11 - ‘11‘22 + ‘22 

(111.46) 

111.3.2. Work hardening materials 

For materials  which  obey  the work hardening  law (11.42) the  trans- 

formation coefficients  in (111.29) are 

- A3 E - 2  
cllll 

- B3 E - 2  
c2222 

= - - (F’ + S2 ) B -  n 

= - - (F’ + S1 ) A -  R 
(111.47) 

- - - E 

R 5122 - c2211 
-- 

= AB - - (VF’ - S1S2) 

where 

(111.48) 

(111.49) 



111.~6. The Expressdon. f o r   V i r t u a l  Work 

The incremental .equations sf equilibrium  between  configurations 

1 and 2 foT t h e   s h e l l   c a n   b e . w r i t t e n .  i n  the  form of an  expression of 

v i r t u a l  ~ ~ o r k ,  The general  form of the   expressgon  of   v i r tua l  work i n  curvi-  

l inear   coord ina tes  i s  given i n   e q u a t i o n  (8.13). i n  Appendix A. The incre-  

mental   expression  of   vir tual  work f o r  axisymmetrically.deformed s h e l l s   o f  

revolut ion was derived from (A.13) i n  Appendix: F. If t h e   s h e l l  is t h i n  so 

+ka t  - << 1, and - << 1 . then  the  equations  (A.13),  (F.16),  (F.18), 

and  (F.21)  reduce t o  the  following form i n  terms of phys ica l  components: 

r r 
RS 'e 

(111.50) 

(111.51) 

9 (111.52) 

and 

{FIT = < Rs qs Bs > (111.53) 

t h e   t i l d a s   o v e r   t h e   v a r i a b l e s   i n  (111.52)  and  (III..53)  indicate  that 

t h e s e   q u a n t i t i e s  are spec i f i ed .   Subs t i t u t ion   o f .  (111.29) i n t o  (111.50) 

and   in tegra t ion   over   the   th ickness   o f   the   she l l   l eads  t o  

where   the   nonl inear   par t   o f   s t ra in   vec tor  is 
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and 

(111.56) 

h/2 
= I  

-h/2 

{ E l T  = < es ee KS % > 

. d5 Y 

and the rigidity matrix is 

[D 1 
4x4 

The components of [Dl are 

and 

(111.57) 

(111.58) 

(111.59) 

(111.60) 

(111.61) 

(111.62) 

(111.63) 
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CHAPTER IV: APPLICATION OF THE  FINITE  ELEMENT  .aTHOD  FOR  THE 

ANALYSIS OF AXISYMMETRIC  SHELLS OF REVOLUTION 

The  application  of  finite  element  method to structural  problems  has 

been  discussed  in [6,  136-1381. The  direct  stiffness  procedure  of  the  dis- 

placement  formulation  of  finite  element  method  which  has  been  widely  used 

for  both  linear  and  nonlinear  analysis  of  structures  has  been  explained  and 

the  various  requirements  on  the  assumed  displacement  fields  has  been  dis- 

cussed  in  several  references,  e.g. [6,15,25,34,136,138,139]. The  incre- 

mental  expression  of  virtual work given  by  equation  (1.27)  can  be  solved 

for  the  displacements  by  the  displacement  formulation  of  the  finite  element 

method.  In  this  Chapter,  first a nonlinear  incremental  procedure  of  solv- 

ing  (1.27)  using  the  displacement  approach  of  the  finite  element  method  is 

discussed  and  the  basic  steps  are  explained.  Then,  using  the  direct  stiff- 

ness  technique,  the  linear  part  of  the  incremental  procedure  is  applied  for 

the  nonlinear  analysis  of  elastic-plastic  shells  of  revolution. 

IV.1, Displacement  Formulation  for a NowLinear Incremental  Procedure 

The  incremental  expression of virtual work in  configuratfon 2 is 

given  by  Equation  (1.27)  as 

(Io 27) 

Assume  that  the  material  space of the  body  in  configuration 1 is  composed 

of a set  of  simply  connected  subregions  called  finite  elements.  Then 

Equation  (I,27)  can  be  thought  of  as  the  sum  of  similar  expressions  for 
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the  elements,  Lee  the  displacement  increments.,  ui.(zm),  of  the  points 

fn  the  elements  be  expressed  in’terms  of  the  displacement  fncrements, 

r. ( z  ) ; of  certain  points  or.  sets  of  points of the  elements  called  the 

nodes  (which  are  usual13  at  the  interfaces  of  the  elements)  by  some 
J n  

interpolation  functions M. (2,) as 
l j  

(IV. 1) 

The  displacements  ui(zm)  are  continuous  in  the  element  and  vanish 

beyond  the  boundaries  of  the  element.  Thus  the  element.is  the  support 

for  the  functions  ui(zm).  The  combination  of  all  such  displacements 

for  all  the  elements  comprise  the  total  incremental  displacement 

field  of  the  whole  body. f i e  element  displacement  and  geometry 

representation  should be such  that  the  rigid  body  motion  of  the 

elements  and  the  compatibility  requirements  at  the  element  boundaries 

be  satisfied, In addition.,  for  the  uniform  convergence of solutions, 

the  disp1acements.must  be  such  that  uniform.straining  modes  of  the 

elements  exist. 

In  the  same  wag  the  tractions  and  body  forces  are  expressed 

in  terms  of  the  magnitude.of  tractions  and  body  forces  at  the  nodes 

by  some  interpolation.  functions  such  as 
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For materials where the   re la t ionship   be tween s. and E i n  t h e  

elements can be  expressed by 
1J i j  * 

5 . .  
1J - ' i jka 'kR Y (IV. 4 )  

- 

t h e   3 u b s t i t u t i o ~  of (IV.1) - (IV.5) i n t o  (1.27) r e s u l t s  i n  the  fol lowing 

incremental force-displacement  relationship: 

where 

1 Ci j r . t (Mik , j  " Mjk,i)("rn, t  + M t n , r  1 dv y (IV.8) 
V 

fi- Tij(Mmk,i " Mmn,j * Mmn,i M mk,j dv s (IV.9) 

" ("rs ,t " Mts ,~?(~mk,i M mn., j + M  mk,j M mn,i 11 dv y 

(IV 0 10) 

and 

;'x 
More compl ica ted   cons t i tu t ive . re la t ions   can   be  assumed. The s t a t e d  

r e l a t ionsh ip   i s   su f f i c i en t ly   gene ra l   fo r   ou r   pu rpose   he re .  
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(3) - 1 
Kknsu - V 1 ‘ijrt M ms,r  Mmu,t “rnk,i Mmn,j =t Mmk,j M mn,i  dv 

(IV. 11) 

The  stiffness  matrix e) is  due  to  the  linear  part  of s 6 ~ .  . in 

(1.27). The  stiffness  matrix Kkn , called  the  tangent  or  initial 

stress  stiffness  matrix,  is  due to the ~ * . q  term  in  (I.27),  and  the 

matrices Kkns (2)  and Kknsu are  due  to  the  nonlinear  terms  in  sij6Eij. 

It can  be  seen  that  the  incremental  force-displacement  relationship  in 

(IV.6)  consists  of  a  linear  part  and  an  underlined.  nonlinear  part.  In 

ij IJ 
(1) 

.J ij 
(3 )  

general,  chis  relationship  must  be  solved  by  successive  approximations, 

e.g.,  iteration.  The  linear  part  of  (IV.7)  can  be  used  as  a  first 

approximation  in  a  direct  incremental  procedure. 

When  the  nodal  displacement  increments  are  found  from  (IV.6)  they 

are  added  to  the  total  nodal  displacements  at  configuration 1 to give  the 

total  nodal  displacements  at  configuration  2 

(IV.12) 

Substitution of r.(zn)  in  (IV.l)  and  the  result  in  (IV.5)  and (IV.4) 

gives  the  increments  of  stresses s Then  by  (1.15) , (1.46) , and 

(1.45)  the  Cauchy  stress  components  in  configuration 2.are found. 

J 

ij 
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IV.2.  Discsetization.of  Shell  Geometry 

The  shell  is  subdivided  into  a  number of doubly  curved  ring  elements 

and  a  cap  element.  Khojasteh  Bakht [140] has  found  that  doubly  curved 

elements  for  whick  the  positions,  slopes,  and  curvatures  of  the  shell 

meridian  match  at  the  nodes  and  which  are  described  in  local  Cartesian 

coordinate  systems  give  very  good  results  for  small  deflection  analysis 

of  axisymmetric  shells  of  revolution. Also, he  studied  a  degenerate  form 

of this  element  which  has  all  of  the  above  properties  rxcept  that  meridian 

curvatures  do  not  match  at  the  nodes.  He  designates  these two types  of 

elements  as  FDR(2)  and  FDR(l),  respectively.,  He  found  that  for a  hemi- 

spherical  shell  under  internal  pressure  the  results  with  nine FDR(1) 

elements  is  the  same as the  exact  solution.  In  the  displacement  method 

of  finite  element  procedure  the  curvatures  at  the  nodes  of  adjacent  elements 

do  not  remain  the  same.  In  the  present  incremental  method  of  large  deflec- 

tion  analysis,the  nodal  curvatures  are  used  in  finding  thE  varying  geometry 

of  the  elements.  Therefore,  in  order  not to introduce  additional  constraint 

on  the  de€ormation  of  elements  (by  matching  the  curvatures)  FDR(1)  elements 

are  used  in  this  dissertation. 

The  meridional  profile of the  middle  surfaee  of  the  curved  element 

FDR(1)  for  an  arbitrary  shell  of  revolution  is  shown  in  Figure  IV.l.  The 

local  Cartesian  coordinate  system  for  this  element  is  denoted  by 5 and n. 
6 is  a  normalized  coordinate  with  value 0 at  i  and 1 at j. The 

angles  are  positive  as  shoFm  in  the  Eigure  and  the  following  relation 

applies 

* 

A 
11 as  a  local  Cartesian  coordinate  for  an  element  is  uded  only  in  this 

Chapter. It should  not  be  confused  with nij, the  nonlinear  part  of 
Lagrangian  strain. 
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DOUBLY CURVED ELEMENT 

FIG. IF:--2 C A P  ELEMENT 
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@ + q J + B  = lT/2  (IV.  13) 

In [140] the  meridian  of  the FDR(1) element is represented  by 

where 

al = tan Bi 

(IV.14) 

(IV.15) 

a, = - (tan Bi + tan 6.) 
L 3 (IV.16) 

The  parameters  in  (IV.15)  and  (IV.16)  are  determined  from 

Ar = r - r  
j i  

AZ = z - 2  j i  

As = [g2 + Az ] -2 1/2 

sin qJ = - Ar , cos qJ = - A2 
As  As 

(IV.17) 

sin f3 = cos 4 cos qJ - sin @ sin I/J n  n  n 
n = i,j 

cos Bn = sin @n cos I/J + cos @ sin qJ n 

The  following  relations  which  can  be  derived  from  the  geometry  of 

the  substitute  element  will  be  used  in  some of the  equations  in  the  sub- 

sequent  presentation. 
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d2rl - R = " -  

dE2 
3 

rl 
i 5 

, R is t he  cord length 
Rs cos B 

- - r + Rc(sin @ + - cos @) 

R 
cos B 

= -  

cos @ = cos @(tan  B cos $J + s i n  $1 

s i n  @ = cos B(cos $J - t an  B s i n  $1 
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- IV-3. Displacement  .Pattern 

Following  the  work  in [140] the  displacements  of  the  middle  sur- 

face  of  the  elements  will  be  chosen  to  be  u1  and u (see  Figure  IV.1). 2 

These  displacements  are  expanded  in  terms  of  the  generalized  displacement 

coefficients ai. For  a  ring  element  these  expansions  are 

u1 = a1 + a2 5 ¶ 

and (IV.19) 
2 u 2 = 01 + a 4 5 + a 5 5  +a65 3 , 3 

where 0 - < 5 1. These  displacement  expansions  satisfy  the  requirements 

of  rigid  body  motion  and  compatibility  for  the  elements  of  axisymmetri- 

cally  loaded  shells  of  revolution. It can  be  shown  that  they  do  not  give 

all  of  the  constant  strains  required  for  uniform  convergence  of  the  solu- 

tion  unless  angle $ is  zero.  However,  when  the  length of the  meridian 

of  the  curved  elements  is  chosen to be  small  and  approximately  equal to 

* 

the  cord  lengths  then  the  constant  strain  requirement  vi11  be  satisfied 

sufficiently  well. 

The  transformation  between  the  displacements  ul, u2 and u, w 

is  as  follows 

I U w cos $ sin B 

- sin f3 cos B 

.*. 
"This  point  was  brought to the  author's  attention  by Mr. P.  Larsen, 

Graduate  Student  in  the  Division  of  Structural  Engineering  and  Structural 

Mechanics,  University of California,  Berkeley,  California. 
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At the  top  of  a  cap  element  for  the  axisymmetrically  deformed  shell 

of  revolution  the  displacement  u  and  the  rotation w vanish  (see  Figure 

IV.2). Hence  from  (IV.19),  (IV.13),  and  (IV.20) 

a 
a = - 20s (J - = - cos I/J a' 1 sln I/J 3 

3 (IV.21) 

Also, when w = 0 then  sin W = 0 and  from  (111.7)  it  can  be  seen  that 

x = 0. Substitution  of  (IV.19)  and  (IV.20)  into  (111.5)  gives 

a = tan I/J a4 = ai  2 

Hence  the  displacement  pattern  for  the  cap  element  is 

(IV.22) 

u = - cos I/J a' 

u = sin JI a' + tan 8, a i  5 + 5 + a6 5 

1 3 + a; 5 
(IV.23) 

2 3 
2 3 

In  the  regions  of  the  shell  where  the  rate  of  change of meridional  vari- 

ables  like  meridional  curvature  and  in  plane  force  is  high  many  elements 

must  be  used so that  the  linear  expansion  for  u1  can  give  reasonably 

accurate  results. 
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" IV.4. Strain-Displacement  Relations 

For  the  present  numerical  application  the  terms of the  type e#, 

and  esX  have  been  neglected  in  the  curvature  terms  (111.24).  Then  the 

strain  vector  is 

where 

{elT = < es  ee K~ 0 K ~ O  > 

e 
S cos 4 

S 
, K O  = -  

8 r 

Substitution of (IV.20)  in  (111.3) - (111.5)  gives 

cos2 B du  du2 '+tanB-) , e =  
S R (-- dS d-6 

1 
r 1 = - (sin 9 u + cos 9 u2) Y 

cos2 f3 dul  du2 ) x =  R (tan B d~ - d~ 
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(IV.26) 
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IV.5. Element  Stiffness  Matrices - 
Four  stiffness  matrices  were  derived  for  the  incremental  force- 

displacement  relation (IV.6). For  a  linear  incremental  procedure  only 

K(O)  and K(') are  required.  These  two  matrices  will  be  derived  in 

this  section  for  axisymmetric  shells  of  revolution. 

IV.5.1. Stiffness  matrix  k (0) 

It was  demonstrated  in  Section IV.l. that  in  the  general  case 

the  stiffness  matrix K (O) is  derived  from  the  linear  part  of s 6~ 

in (1.27). For  the  axisymmetric  shells  of  revolution k(O) is  associated 

with  the  linear  part  of 6{&}T[D]{&} in (111.54). The  relationship  be- 

tween  the  linear  part  of  strain,  {e},  and  the  generalized  coordinates 

{a 1 can  be  found  by  substitution  of (IV.l9),  (IV.28), and (IV.26) into 

(IV.25). In  matrix  notation 

ij ij 

(IV.29) 

where  matrix [B(c)] is  given  in  Appendix G for  both  ring  and  cap  elements. 

Therefore,  when (111.54) is  written  for  an  element  of  the  shell  and  in  terms 

of  coordinates 6-11 (see  Figure IV.l), then 

The  components  of  the  rigidity  matrix [D(E)] are  obtained  by  the 

integrations  in (111.61) - (111.63). These  integrals  are  evaluated  numer- 

ically.  In  order to follow  the  history  of  deformation  of  the  shell  in  the 

elastic-plastic  analysis  sufficiently  large  number  of  points  should be con- 

sidered  in  the  thickness  of  the  shell  and,  therefore,  simple  methods  of 
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numerical.integration  can  be  used. It has  been  found  in [l4Oy141] that 

rectangular  rule  of  numerical  integration  is  satisfactory.  For  this  pro- 

cedure  the  shell  is  divided  into a number of layers  along  its  thickness 

(see  Figure  IV.3).  The  material  property  matrices [F] are  assumed  to 
be  constant  in  the  thickness of each  layer.  Then 

where 

If  the  layers  have  equal  thickness,  then 

(IV.32) 
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r 

2 
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(IV. 33) 

The  value  of  the  material  property  matrix [ - d ( S , S )  3 along  the 

meridian  of  the  element  can  be  expressed  in  terms  of  its  magnitude  at  the 

nodes  by  some  suitable  interpolation  €unction. For sufficiently  small 

elements  linear  interpolation  can be sed. Thus 

(IV.34) 

In  the  same  manner  the  variation  Jf  the  shell  thickness  can  be  written  as 

h(S) = (1-5) hi + 5 hj  (IV.35) 

The  integral  in  (IV.30)  can  be  evaluated  numerically.  Gauss'  integration 

formula  is  used  for  this  purpose  [142]. 

IV.5.2.  Stiffness  matrix k (1) 

The  initial  stress  stiffness  matrix k(') is  obtained  from  the 

term  6{QlT{N) in (111.54). The  components  of  the  nonlinear  strain  vec- 

tor {~(5. )}  are  given  in  (111.22)  and  (IV.27).  Vector {r)(S)} can  be 

written  as 

(IV.36) 
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where 

1x4 

and 
' 1  0 

0 0 

0 0 

0 0 

0 

0 

0 

1 

2 2 
X 
2 2 
- x >  9 

0 

0 

- 0 
RS 
0 - sin $I 

r 

Also let  the stress resultants in configuration 1 be  expressed by 

where 

1x4 

and 

I N  0 
S 

0 

0 0 

0 0 

lNe 

0 

0 

5i 
S 

0 

54 
S 

0 

0 

0 

The variation of 6{{(5)) is 

(IV.37) 

(IV.  38) 

(IV.39) 

9 (IV.40) 

Y (IV. 41) 

(IV.42) 

(IV.43) 
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This  variation  can  be  written  as 

where 

(IV.44) 

, (IV.45) 

(IV.46) 

Substitution of (IV.36),  (IV.39)  and (IV.44) into 6{dT{N} gives 

Also substitution  of  .(IV.l9)  into  (IV.28)  gives 5 

(IV.48) 

where  Matrix [G(€,)] is  given  in  Appendix G for  both  ring  and  cap  elements, 

In  view of (IV.48),  expression (IV.47) becomes 

Substitution of (IV.49)  into  (111.54)  results  in  the  following  expression 

for  the  initial  stress  stiffness  matrix  of  an  element 

6x6  (IV.50) 
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IV..6. The  lnczemeatal  Eorce-Displacement  Relations 

The  displacement  vector  for  an  element  is  chosen  to  be 

1x3 

Substitution  of  (IV.19)  and  (IV.28)  in  (IV.51)  results  in 

(IV.51) 

(IV.52) 

where [@(E)]  is  given  in  Appendix G. Substitution  of  (IV.52)  in 

(111.54)  results  in  the  following  expression  for  the  generalized  force 

of  the  element. 

(IV.53) 

where,  for  a  linear  interpolation,  the  surface  force  vector {p(S)) 

can  be  written  as 

element  in  coordinate  system { a )  is 

6x1 6x6  6x1 

where 

6x6  6x6  6x6 . 

At  the  nodes  of  the  element,  equation  (IV.52)  has  the  form 
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(IV.55) 

(IV.56) 

(IV.57) 



where (9) i s  the   vec to r  of  nodal  displacements i n  6-q coordinate  

system 

(IV.58) 

1x6 

The c o e f f i c i e n t s  ci are o b t a i n e d   i n  terms of { q )  by inversion  of 

(IV.57) 

(IV.59) 

where  matrix [A ] i s  given i n  Appendix G. The relat ionship  between -1 

t h e  components of  nodal  point  displacement  vector i n  6-q coordinates ,  

{ q )  , and the  corresponding components i n   t he   su r f ace   coord ina te s ,  {r) 

is  given by 

(IV.60) 

where 

( I V .  61) 

1x3 

The matrix [TI i s  given i n  Appendix G. Transformation  of (IV.55) i n t o  

surface  coordinates   resul ts   in   the  fol lowing  incremental   force-displace-  

ment r e l a t i o n  

where 

(IV.62) 



and 

{r} = [ T I   [ A I  {a} T 

6x1  6x6  6x6  6x1 
Y 

(IV.63) 

(IV.64) 

(IV.  65) 
6x6  6x6  6x6  6x6  6x6  6x6 

Considering  the  equilibrium  and  compatibility  requirements  at  the  nodal 

circles,  the  relations (IV.62) of the  elements  are  combined  using  the 

direct  stiffness  method  and  the  incremental  force-displacement  rela- 

tions  for  the  whole  shell  is  obtained. 

(IV.66) 

where N is  the  number of elements of the shell; (r), and {R} are 

the  vectors  of  all  incremental  nodal  displacements  and  generalized 

forces;  and [K] is  the  total  incremental  stiffness  matrix of the 

shell. 
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IV.7.  The Procedure.of.Incrementa1 Analysis 

The  procedure  for  the  analysis  of  large  deflections  of  alastic- 

plastic  shells  of  revolution  using  the  finite  element  scheme  developed 

in  this  chapter  is  outlined  in  this  section.  The  ineremental  solution 

starts  from a known  initial  configuration  where  the  shell  is  assumed  to 

be  free  of  stress.  Then  load  increments  are  added  successively.  For 

each  one  corresponding  lisplacement  increments  are  obtained,  and  the 

geometry  and  the  material  properties  of  the  shell  are  renewed  accordingly 

to be used  as  the  initial  values  for  the  next  increment.  The  details  of 

the  procedure  for a typical  increment  of  load  for  strain  hardening 

materials  is  as  follows.  The  displacement  increments  are  found  from 

(IV.66)  and  the  increments  of  strain  for  each  layer  in  the  shell  thick- 

ness  are  obtained  from  (IV.291,  (IV.48), (111.14), and  (111.15). The 

total  strains  are  obtained  from (B.5) which  for  the  physical  components 

of  strains  in  axisymmetric  shells  of  revolution  becomes 

1 1 2& = E22 + (1 + 2 E22) E22 . 22 

(IV.67) 

From  (111.29)  the  Piola  stress  increments  are  calculated  and  are  used 

in (1.15)  to  find  the  total  Piola  stresses  which  are  then  transformed 

to  Cauchy  stresses  by 

2 = " 1+2E11 
T1l  1+2&22 

2T 22 = J -  1+2&22  1+2&11 

2S 11 

2 
S 22 
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The  loading  criterion  (11.23)  is  checked  and  .for  loading  the  plastic 

increments  of  strain  are  used  to  find  the  increment  in  equivalent 

plastic  strain  (11.41)  which  is  used to find  the  total  equivalent 

plastic  strain  by 

2) + (A 2) (IV.69) 

This  strain  is  utilized  in  the  uniaxial  stress-strain  curve  to  find 

the  tangent  modulus  and  the  equivalent  stress 0 (see  Figure  11.3). 

The  value of is  used  to  modify  the  new  state  of  stress.  The  tangent 

modulus  together  with  the  new  state  of  stress  and  strain  are  used  in 

(111.30)  and  (111.31) to find  the  new  material  properties.  The  new 

geometry  of  the  shell  is  obtained  from  (IV.12)  and  (111.7).  Now  the 

next  increment  of  load  can  be  added  for  which  the  above  procedure  is 

repeated. 

- 

The  procedure  explained  here  is  essentially  a  forward  integration 

method  where  the  magnitude  of  the  variables  at  the  beginning  of  each 

increment  is  used  for  the  integration  during  the  increment.  This 

method  can  be  improved  by  various  integration  techniques,  see,  e.g., 

[143]. It was  found  in [141] that  a  modified  Euler  method  gives  im- 

proved  results  for  the  case  of  infinitesimal  deflections  of  elastic- 

plastic  circular  plates.  This  modification  can  also  be  used  in  the 

present  problem. 

96 



CHAPTER V: NIJIERICAL EXAMPLES 

I n   t h i s   c h a p t e r .  the l inear   incremental   procedure  developed  in  

Chapter I V  is  a p p l i e d   t o .   t h e   l a r g e   d e f l e c t i o n   e l a s t i c - p l a s t i c   a n a l y s i s  

of some axisymmetrically deformec' shells of  revolution. The purpose is 

to  s tudy  the  accuracy  and  convergence  of   the  direct   l inear   incremental  

method and ,   therefore ,  no auxi l iary  numerical   procedures   have  been  intro-  

duced t o  improve  the  accuracy  of   the  resul ts .  A complete  study  of  the 

nonlinear  incremental  procedure  of  Chapter I V  r e q u i r e s   e i t h e r   a n  itera- 

t i o n  scheme o r  some improved in tegra t ion   techniques  l ike modified  Euler 

o r  Runge-Kutta  method [ 1 4 3 ] .  

A br ie f   descr ip t ion   of   the  computer  program is  given  and  then 

several examples i n   t h e  elastic and e l a s t i c -p l a s t i c   r ange  are solved. 

- V o l e  Outline  of Computer Program 

A computer  prograu was developed  and  used  for  the  nonlinear elastic- 

p l a s t i c   a n a l y s i s  of axisymmetrically  loaded  and  supported  shells  of  revo- 

l u t i o n ,  The l inear   incrementa l  method of  Chapter I V  is used. 

The program is i n   F o r t r a n  I V  language  and was used  on CDC 6400 

computer. The. capaci ty   of   the  program I s  l i m i t e d  to maintain  an  in-core 

ana lys i s .  Examples with  up. t c  80 elements  each  with 20 l aye r s   can   be  

t r e a t e d ,  The capacity  can  be  increased by means of  out-of-core  storage 

faci l i t ies  i f  required.  

A concise   out l ine  of   the   computer .program is g i v e n   i n   F i g .  V.1 .  

This   char t ,   toge ther   wi th   the   explana t ione   in   Sec t ion  I V .  7, is enough 

t o  acquain t   the   reader   wi th   the   bas ic   s teps  and some de ta t l s   o f   the   p ro-  

gram. The l i s t i n g  and the ins t ruc t ions   for   us ing   the   p rogram will b e  

publ i shed   in   another   repor t .  
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Read  Data 
1- number  of  structures  to  be  analyzed 
2- discretization  data 
3- material  properties 
4-  boundary  conditions 
5- element  geometry 

t L Construct  Geometrical  Parameters  and 
Matrices:  [Bl,  [GI,  [A 1 [TI,  [Fl, 
and [@I. 

Read  App,lbed  Load  Increments  in  Current 
Geometry  and  Convert  to  Consistent  Nodal 
Loads. 

t 
Construct  Matrix  [Dl,  Element  StiffnesP 
Matrix [k] = [k")] + [k")],  and  set UF 

Systen;  Stiffness  Matrix  [K]. 

t 
Impose  Boundary  Conditions  and  Solve 
Equations  for  Displacement  Increments; 
Find  Total  Displacements. 

Compute : 
1- different.  kinds of stresses 
2- stress  resultants 
3- new  material  properties 

t 
Renew  the  Geometry: 

1- compute  new  geometrical  parameters 
2- compute  total  displacements  in 

initial  configuration  coordinates 

No 
Are  All  Load  Inc 

Yes 
I '  

No 

Are  All  Structures  Analyzed? 1 
" Yes 

stop 

Fig.  V.1  Concrlse  Outline  of  Computer  Program 
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V,2.  Elastic Solut ions 
I_ 

I n   t h i s   s e c t t o n   t h e   r e s u l t s   J f   t h e  linear incremental :   f ini te   e lement  

method are compared with some o the r .   ex i s t ing   t heo re t i ca l   so lu t ions   fo r  

e las t ic  c i r cu la r   p l a t e s   and   sha l low  sphe r i ca l   she l l s  The purpose is t o  

check  the  accuracy  and  convergence  of  the  present method i n  t h e  e las t ic  

range 

V 2.. 1. Circular P l a t e s  

The incremental  method is app l i ed   t o  a clamped c i r c u l a r  elastic 

p l a t e  and t h e   r e s u l t s  of  normal   central   def lect ion,   and membrane and 

bending stresses are compared with Way's power series expansion  solut ion 

[121] (see Figures V.2, and V.3). Since   t he   p lo t s  are dimensionless,   the 

r e s u l t s  are app l i cab le   t o  any c lamped.c i rcu lar   p la te   wi th   Poisson ' s   ra t io  

of 0.3. 

As t h e   p l o t s   i n   F i g u r e s  V.Z,.and V03 indicate ,   the   agreement  

between t h e   p r e s e n t   r e s u l t s  and Way's s o l u t i o n  is  good for   both  displace-  

ments  and stresses. There is  p r a c t i c a l l y  no difference  between  the 

resu l t s   ob ta ined  fo r  the  load  increments  (a/h) (Ap/E) = 0.54 and h a l f  

t h i s  value. In t hzs  example the  cord  length  of  an element was chosen 

as 0.055a. The computer time used  per  increment  of  load  per element 

is 0.65 seconds. 

4 



i 

0 
0 

1/ = 0.3 
- REF [I211 

L INEAR THEORY 

F1G.Y-2 LOAD-DEFLECTION  CURVE FOR CLAMPED  CIRCULAR  PLATE 



5 

4 

2 

I 

0 

I I 

- 
J= 0.3 - REF. n211 

- LINEAR THEORY / / 

0.4 0.8 
CENTRAL REFLECTION w,/h 

F IG.9-3  STRESSES FOR CLAMPED  CIRCULAR  PLATE 

101 



V.2.2, Shallow  Shells - 
Nonlinear elastic so lu t ions-are   g iven   for  two clamped shallow 

s p h e r i c a l   s h e l l s   w i t h   d i f f e r e n t  parameters X. The  geometric  parameter 

X for   shal low  shwlls  is. defined by X = [ m ( a 2 / h R ) ] 1 / 2  where h 

is the   th ickness   o f   the   she l l ,   and  R and z are shown i n   F i g u r e  V.4. 

The values  of X f o r   t h e   p r e s e n t  examples are. low enough to   a s su re  

axisymmetric de f l ec t ions .  

A. Comparison. with  Kornishin's   Solution 

I n   t h i s  example  t h e  results of .   the  linear incremental  method are 

compared with  Kornishin 's   power.ser ies .solut ion  [ I441  for  a shallow 

spherical   cap  with X = 2.22  (see  Figure  V.4). The dimensionless 

r e s u l t s   i n   F i g u r e  V.4 app ly   t o  any  shallow  spherical   cap as long as 

X = 2.22, Po i s son ' s   r a t io  v = 0 .3 ,  and   t he   she l l  is thin.  Values  of 

0..75 and  0.375 are used  for  the  dimensionless  load  increments.  The load- 

def lect ion  curve i n  Figure V.4 i n d i c a t e s   t h a t   t h e   r e s u l t s  by the  smaller 

load  increments are c loser   to   Kornish in ' s   curve   for  (wo/h) < 2.  Beyond 

tha t   t he   r e su l t s   o f   t he   l a rge r   l oad   i nc remen t s  are c lose r .  This can  be 

a t t r i b u t e d   t o   t h e   f a c t   t h a t   s i n c e   i n  a l inear   incremental   procedure  the 

increments are taken  a long  the  s lope  to   the  load-deflect ion  curve and 

t h e   t r u e   s l o p e  is more closely  approximated by smaller  load increments, 

t hen   i n   t he   p re sen t  example near (wo/h) = 1.5 where the  tangent is 

almost   horizontal   the  smaller load  increments  overestimate  the  deflec- 

tion.  This  problem  can  be overcome i f  instezid  of  the  present  l inear 

incremental   procedure  the  nonlinear  incremental   formulation o f  Section 

I V . l  i s  used. It can   a l so   be   t rea ted  by r ep lac ing   t he   p re sen t   l i nea r  
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incremental   procedure which is ac tua l ly .  Euler’s fo .mard   in tegra t ion  method 

by the  modified Euler or.Runge-Kutta method [143]. 

Eighteen  elements were used .   in .   the .   p resent  example w i t h   f i n e r  

elements near  the  edge o f  the   she l l . .  The computer time per load  increment 

per  element c7as 0.68 seconds. 

B. Comparison with  Kaplan  and. Fung ‘ s  Resul ts  

The f i n i t e   e l e m e n t   s o l u t i o n  i s  compared 1.7ith Kaplan  and  Fung’s 

e-xperimental results and t h e i r   t h e o r e t i c a l   p e r t u r b a t i o n   s o l u t i o n   f o r  a 

shallow  sphericpl  cap  with X = 4.01  [97]  (see  Figure V . 5 ) .  The f i n i t e  

element method is appl ied   to   bo th   the   in i t ia l ly   per fec t   and   imperfec t  

shal low  spherical   cap.  The geometrical  imperfections  measured i n  [97] 

were used, The r e s u l t   o f   t h e   p e r f e c t   s h e l l   a g r e e s  well with  the  theo-  

retical s o l u t i o n  i n  [97]   and   tha t   o f   the   imperfee t   she l l  i s  c l o s e r   t o  

the  experimental   observation  but  does  not  close  the  gap  between  the 

theore t ica l   and   exper imenta l   resu l t s .  

Zightaen  elements were used  ~-7ith  f iner  elements a t  t h e  boundary 

of   the  shel l . ,  The computer time per  load  increment  per  element was 0.68 

seconds 

v.3- Elas t ic -Plas t ic   Solu t ion  

The.elast ic-plast ic   behavior   of  a tor i spher ica l   she l l   under   in -  

t e rna l   p re s su re  is studied.  The r e s u l t s  of non l inea r   e l a s t i c -p l a s t i c  

ana lys i s  are reported and  compared with  those  of  nonlinear e las t ic  and 

l i n e a r   e l a s t i c . - p l a s t i c   a n a l y s i s .  
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The geometrical  dimensions of the s h e l l  are (see Figure V.6): 

D = 100 i n .  

R = D  

r = 0.2 D 

h = 0.008 I' 

diameter  of  head s k i r t  

r ad ius  of sphere 

meridional  radius  of  torus 

shel l   th ickness ,   uniform 

The material o f   t he   she l l  is assumed to be   e l a s t i c -pe r fec t ly   p l a s t i c   w i th  

y i e l d  stress 0 = 30 x 1C p s i ;  and  Young's  modulus  and Po i s son ' s   r a t io  

E = 30 x 10 p s i ,  V = 0.30, respect ively.  

3 
Y 

6 

The s h e l l  i s  d iv ided   in to  36 elements  and  the  thickness  of  each 

element is div ided   in to  1 E  equal   layers .  The convergence  of  the  nonlinear 

a n a l y s i s   i n   t h e   i n e l a s t i c   r a n g e  i s  s tudied  by us ing   t h ree   d i f f e ren t  magni- 

tudes  for   the  loat   increments  beyond the  pressure  of  390 ps i   ( see   F igure  

V.6). Below th is   p ressure   the   load-def lec t ion   curve  i s  a lmost   l inear  and 

convergence  study was considered  tc  be  unnecessary. The three  load  incre-  

ments a r e  7.5, 15, and 30 p s i .  The results in   F igu re  V.6 i n d i c a t e   t h a t  

the  convergence  increases as the  magnitude  of  load  increments  decreases 

and  that   the  rate of convergence is qui te   rap id .  The r e s u l t s  i n  Figures 

V.7 t o  V.1C are f o r  Ap = 15  ps i .  The average  computer time used  per 

load  increment f o r  each  element i s  0.765 seconds 

The comparison  of  the  linear and non l inea r   e l a s t i c -p l a s t i c   l oad  

def lec t ior   curves   in   F igure  V.6 i n d i c a t e s   t h a t   f o r   t h e  same value of 

the  apex normal deflection.,  w the   nonl ineal   analysis   predicts   higher  

load   car ry ing   capac i ty   for   the   she l l .  The d i f f e rence   va r i e s  from  zero 

tc about 11% for  displacements  up t o  0 . 4  inches.   I f   def lect ion is  used 

as the   con t ro l l i ng   f ac to r  i n  defining  the  ult imate  load  carrying  capacity 

of   the   she l l   the   above   d i f fe rence   can   be   s ign i f icant .  

0: 

106 



The var ia t ion  of   the  normal   displacement  v,  meadtdional bending 

moment M and  the  c i rcumferent ia l   in-plane  force Ne a long   the  

meridional   curve  of   the  shel l  a r e  shown .fn Figures V . 7 , . V . 8 ,  and V.9, 

It can   be   seen   in   F igure  V.7 that .   the   normal   displacement   of   the  non- 

l i n e a r   a n a l y s i s  is  appreciably less than   tha t   o f   the  l inear a n a l y s i s  a l l  

a long   the   she l l ,  The red is tx ibut ion  of stresses as a result of p l a s t i c  

deformatior  can  be  seen i n   F i g u r e s  V . 8  and V,9. The comparisons  of 

l inear and non l inea r   e l a s t i c -p l a s t i c   r e su l t s   i n   F fgures .V .8   i nd ica t e s  

t h a t   f o r   t h e  same va lue  of i n t e rna l   p re s su re . the   bend ing  moments due t o  

the  nonlinear  solution are appreccably less t h a n   t h e   l i n e a r   s o l u t i o n .  

The d i f fe rence   in   the   in -p lane   c i rcumferent ia l   force   for   the  two solu- 

t i ons   can   be   s een   i n   F igu re  V.9. 

S S  

The e l a s t i c -p l a s t i c   boundar i e s  i n  t h e   t h i c k n e s s   o f   t h e   s h e l l   f o r  

both  l inear   and.nonl inear   analyses  are shom  in   F igu re  V.10. In   bo th  

so lu t ions  thE f i r s t   l o c a t i o n  i n  t h e   s h e l l  which  reaches  the s ta te  of 

p l a s t i c i t y  is the   i nne r   f ace   o f   t he   t o ro ida l   pa r t   nea r   t he   sphe re  edge. 

The p l a s t i c i t y   f o r   t h e   l i n e a r   s o l u t i o n  sets i n  a t  p = 25G p s i  and f o r  

nonl inear   solut ion a t  a pressure  higher  than  this;   and less than p = 280 

p s i ,  Always the   p l a s t i c   r eg ions   fo r   t he   l i nea r   so lu t ion   p ropaga te  

f a s t e r ,  The p a t t e r n  o f  p ropagat ion   of   p las t ic   reg ions  i s  almost   the 

same fo r   bo th   so lu t ions .  The p l a s t i c   r e g i o n s   f o r   t h e  linear s o l u t i o n   i n  

t h e   s p h e r i c a l   p a r t   l e a n  more  towaxds the  sphere-torus  junction,  whereas 

for   the  nonl inear   solut ion  they  propagate   fas ter   towards  the  apex  of  

t h e   s h e l l .  
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CHAPTER VI: SUMMARY AND CONCLUSIONS 

An incremental  variational  method  has  been  developed  for  the 

analysis  of  large  deformations  and/o.y  displacements  in  continuum  mechanics. 

Several  forms  of  the  incremental  expressions  of  virtual  work  have  been 

derived  and  one  of  them  which  utilizes  a  moving  reference  configuration 

has  been  used  in  the  developments. It is  sho1.m  that  the  fncremental 

variational  formulation  leads to correct  equations  of  equilibrium  and 

boundary  conditions. 

General  incremental  nonlinear  constitutive  equations  have  been - 
derived  for  elastic  materials  taking  into  consideration  the  invariance 

requirements  in  continuum  mechanics  and  the  laws  of  thermodynamics, 

Correspondingly,  an  incremental  theory of plasticity  suitable  for  infti- 

ally  isotropic  materials  and  for  the  case  Jf  small  deformations  but  large 

rotations  has  been  developed  by  specializing  and  adding  some  features  to 

the  general  theory  in [50]. Using  the  principle  of  objectivity  and  the 

property  of  isotropy tt is  shovm  that  the  elastic-plastfc  constitutive 

equations  remain  invariant in Cartesian  and  initially  orthogonal  convected 

curvilinear  coordinate  if  the  Cartesian  tensors  are  replaced  by  the  phys- 

ical  components  of  their  corresponding  curvilinear  tensors. This form 

invariance  is  very  useful  from  the  point  of  view  of  practical  consfder- 

ations  since  it  makes  it  possible  to  bypass  the  complicated  curvilinear 

tensorial form of  the  Constitutive  equations  in  solving  problems, 

The  incremental  method  has  been  formulaced  in  the  finite  element 

form and  the  various  stiffness  matrices  in  the  resulting  incremental 

force-displacement  relations  are  demonstrated. It is shown  that  the 

force-displacement  relation  for  each  increment  consists  of  a  linear  and 
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a nonl inear   par t .  The l i n e a r   p a r t  which includes.an i n i t i a l  stress s t i f f -  

ness matrix  provides a first order  approximation  of  the incremental rela- 

t i ons .  

The developed method is qui te   general   and  can  be  used  for   the 

ana lys i s  of large  deformations  of man: s t ructural   problems.  In  t h i s  

d i s s e r t a t i o n  it has  been  special ized fox the   so lu t ion   of   l a rge   def lec t ions  

of e las t ic -p las t ic   th in   she l l s   o f   revolu t ion   wi th   ax isymmetr ic   loading  

and  support  conditions. The displacement  procedure  of  the  f inite  element 

and   the   f i r s t   o rder   par t   o f   the   nonl inear   incrementa l   equa t ions   have   been  

used   for   the   so lu t ion .  A convenient matrk decomposition method has  been 

shown for the  formulation  of the t angent   s t i f fneso  matrix. This method 

can .be   eas i ly   appl ied  when  more nonl inear  terms o f  the  s t ra in-displacement  

r e l a t i o n s  are considered. 

A computer  program has  been  ;rrit.ten  for the la rge   de f l ec t ion  

a n a l y s i s   o f   e l a s t i c - p l a s t i c   s h e l l s  of  revolution. The accuracy 2nd con- 

vergence  of  the  l inear  incremental   procedure  has  been  demonstrated on 

some examples  of c i rcu lar   p la tes ,   sha l low  she l l s ,   and   she l l s   o f   revolu-  

t ion   wi th   a rb i t ra ry   mer id ian .  It has  been  found  that  the  convergence 

is s a t i s f a c t o r y  when t h e   s t i f f n e s s   m a t r i x  of t h e   s t r u c t u r e  is  not  very 

close  to  zero,   For  problems  where  the  st iffness matrix becomes almost 

s i n g u l a r  i t  is advisable   to  augment the   p rocedure   wi th   an   i t e ra t ive  

scheme o r   a n  improved integrat ion  procedure.  When such  provis ions  are  

made the method can   be   eas i ly   appl ied   for   the   buckl ing   and   pos t   buckl ing  

ana lys i s  o f  e l a s t i c - p l a s t i c   s h e l l s   o f   r e v o l u t i o n .  
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APPENDIX A 

A . l  The Principle  of  Virtual  Work  in  Curvilinear  Coordinates 

Cauchy's  relation  between  the  traction and the  Piola  syametric 

stress  tensor  in  configuration 2 can be written  as [351 (see  Figure 

A . 1 )  

2 r  ik r r t = 2s (6k + u 1,) n i (A. 1) 

where  2tr  are  the  contravariant  components  of  traction  vector  which 

acts  in  configuration 2 but  which  is  measured  per  unit  of  area  of  con- 

figuration 1, *sik  are  the  contravariant  components  of  the  Piola 

Symmetric  stress  tensor  measured  per  unit  of  area  in  configuration 1, 

u are  the  contravariant  components  of  the  displacement  increment r 

vector  from  configuration 1 to 2, and  the  vertical  bar ( 1  ) denotes 
covariant  differentiation. 

The  expression  for  the  virtual  work in configuration 2 can  be 

written  as 

V = J 2tr6u r da + I po2fr6urdv 
a V 

Substitution  of  equation ( A . 1 )  into ( A . 2 )  and  the  application  of 

Gauss'  transformation fo r  surface  integrals  into  volume  integrals  gives 

v r (A .31  
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The i n t e g r a n d   o f   t h e   F i r s t   i n t e g r a l  of equation ( A . 3 )  cons is t s   o f  

the  equilibrium  equations and is iden t i ca l ly   equa l   t o   ze ro ;   t he re fo re ,  

It can  be  wri t ten that 

This i s  due t o   t h e   f a c t '  that  t h e   v a r i a t i o n  i s  appl ied   in   conf igura t ion  2 

and the re fo re   t he   va r i a t ion   o f   t he   Chr i s to f f e l  symbol I" i n  con- g ri 

f igu ra t ion  1 is  equa l   t o   ze ro .  The expres s ion   fo r   v i r tua l  work  becomes 

Due t o  symmetry of 2s ik and t h e   f a c t  that gi j  I = g I . ~ =  0 , then i j  

132 



Therefore,  

i k  r 
2s (6, + vr 

i n  ~ r h i c h  E is  the   covar ian t  component of the   Lagrangian   s t ra in  

between  configurations 1 and 2. 

i k  

Subs t i tu t ion   o f  (A.6)  i n t o  ( A . 5 )  g ives  

The stress 2 ~ i k  can   be   d iv ided   in to  two p a r t s  

2s - 
i k  - Tik  + s i k  (A.9) 

i n   vh ich  'cik are i n  magnitude  equal t o  the corresponding  contravar- 

i a n t s  components  of Cauchy stresses in   conf igu ra t ion  1 bu t  which are 

assoc ia ted   wi th   base   vec tors  G , and sik a r e  symmetric  increments 

of   cont ravar ian t   s t ress  components of t h e  type of  symmetric P i o l a  

stresses. 

- 

Subs t i tu t ion   of  (A .9 )  and (A.8)  i n t o  ( A . 2 )  y i e l d s  

a v 
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The expres s ion   fo r   v i r tua l  work a t  configurat ion 1 can  be  wri t ten as 

( A . l l )  

a V V 

i n  which 

i s  t h e   l i n e a r   p a r t  of the   s t ra in   increment  from configurat ion 1 t o  

configuration  2.  

L e t  the  increments   of   t ract ion and body force   be   def ined  by 

tr = 2tr - Itr , and 

(A.12) 

f = f - f .  r 2 r  l r  

Subs t i tu t ion   o f  (A.12) i n t o  ( A . l O )  and subt rac t ion   of  ( A . 1 1 )  from 

( A . l O )  resu l t s   in   the   fo l lowing   incrementa l   express ion   for  the v i r t u a l  

work in   cu rv i l i nea r   coo rd ina te s  

i n  which 

( A . 1 4 )  
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A.2 Proof   of   the   Val idt ty   of   the   Expression of V i r tua l  Work 

I n   t h i s   s e c t i o n  it i s  shom  tha t   t he   exp res s ion  of v i r t u a l  work 

(A.13) results in   correct   equi l ibr ium  equat ions  and  boundary  condi t ions.  

This  proof is  a l so   app l i cab le  t o  the  Cartesian  expression of vir tual  

work ( I. 2 7 ) .  

The equi l ibr iua   equat ions   in   conf igura t ion  1 are 

Tir l r  l i + P 0  f = o  

and t h e  boundary  conditions are 

(A.16) 

The app l i ca t ion   o f   t he   p r inc ip l e   o f   t he   ba l ance   o f   l i nea r  momentum t o  

the  deformable body in   con f igu ra t ion  2 r e s u l t s   i n   t h e  equilibrium 

equat ions  there .  

v a 

Subs t i tu t ion   o f  (A.12)* i n   t h e  volume i n t e g r a l ,  and (A.l) and (P.9) 

i n   t h e   s u r f a c e   i n t e g r a l   o f  (A.17) and t he   app l i ca t ion   o f  Gauss'  trans- 

f o r m t i o n  results i n  

J { [ (Tik + sikm; 

This   in tegra l   ho lds  

+ U r l k ) l l i  + p o ( l f r  + f r ) ldv = 0 

fo r   any   a rb i t r a ry  volume , t he re fo re ,  
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The boundary  conditions  in  configuration 2 are  given  by  equation 

( A . 1 ) .  Subs t i tu t ion   o f  ( A . 1 2 ) ,   ( A . 9 )  i n t o  ( A . l )  g ives  

Subtraction  of ( A . 1 5 )  from ( A . 1 8 )  and ( ~ . 1 6 )  from ( A . 1 9 )  y i e l d s   t h e  

incremental  equations of equi l ibr ium 

and boundary  conditions 

tr = [s (6k + u 1,) + T u I,] ni . ik r r ik r . 

( A . 2 0 )  

( A . 2 1 )  

It can  be shown tha t  by   car ry ing   ou t   the   appropr ia te   var ia t ions   for  

the expression of v i r t u a l  work ( A . 1 3 ) ,  the   equi l ibr ium  equat ions ( A . 2 0 )  

and t h e  boundary  conditions ( A . 2 1 )  a re   ob ta ined .  The var ia t ion   o f   the  

i n t e g r a l  on t h e   r i g h t  hand side of  equation ( A . 1 3 )  i s  done as follows 

Because  of the symmetry Tik and s , and the f a c t   t h a t   6 u r ;  i s  

t h e  same as ( 6ur' I , t h i s  equat ion  can  be  wri t ten as 

i k  

v v 

V 
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The volume in tegra ls   can   be  changed i n t o   s u r f a c e   i n t e g r a l s  by 

means of Gauss t ransformation 

v a 

v 

a 

V 

Subs t i t u t ion  of (A.22) i n  (A.13) y i e l d s  

- 
a 

r 

(A.22) 

(A. 23 

+ T u ],I I + po rr)sur dv = 0 ik r 

The in t eg rands   i n  (A.23) must vanish   ident ica l ly   Therefore ,   the  

equi l ibr ium  equat ions 

and boundary  conditions 

tr = [ s i k ( 6 ~  + ur 1,) + Tik url,lni (A.25) 

are obtained.which are i d e n t i c a l   t o   e q u a t i o n s  (A.20) and (A.21) 

r e spec t ive ly .  
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B . l  Superposi t ion  of   Strains  

Consider  three  configurations of a deformable body i n   t h e   p r o c e s s  

of deformation  (see  Figure B.l). The components of  the  Lagrangian 

s t r a i n   t e n s o r  between t h e   i n i t i a l  and  the  second  configurat ion  are  

defined by 

This  can  be  writ ten as 

i n  which 'E and E 'are  the  Lagrangian  strains  between  the 

i n i t i a l  and f i rs t ;  and the  second  and f irst  configurat ions  respect ively,  

i j  mn 

Defining sij by 

ax" axn Sij  = " 'inn 

and s u b s t i t u t i n g   i n  (B .2 )  then 

( B . 3 )  
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If convected  curvi l inear   coordinates   are   used  then  equat ion (B .2 )  

becomes 

2E = + E 
i j  i j   i j  

The equivalent form of (B.2) in   Car tes ian   coord ina tes  i s  
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APPENDIX C 

C. 1 The P r inc ip l e  o$ V i r t u a l  Work, Second Al t e rna t ive  

The expression  of   vir fual  work i n  configurat ion 1 can   be   wr i t ten  as 

V 
- 
a V 

i n  which t h e   b a r   o v e r   t h e   v a r i a b l e s   i n d i c a t e s   t h a t   t h e   i n i t i a l  con- 

f igu ra t ion  is  t h e   r e f e r e n c e .   I n   p a r t i c u l a r  u r ep resen t   t he  com- 

ponents   of   the   displacement   vector   between  the  ini t ia l   and first con- 

I- 
i 

figurat ions  expressed i n  the coordinate  system  of the i n i t i a l   c o n f i g -  

u ra t ion .  The express ion   of   v i r tua l  work in   con f igu ra t ion  2  can be  

v r i t t e n  as 

It is  s h o w  i n  Appendix B t h a t  

Also def ine  

- - 2- 1- 
fi - fi - f i  ¶ 

and 

Ti = 2fi - ti 1- 
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i n  which Ti denotes   the   increment   o f   sur face   t rac t ion   in   the   d i rec-  

t i o n  of the   coord ina tes   o f   the   in i t ia l   conf igura t ion  and measured per  

u n i t  area of a , and 

mass in   t he   coord ina te  

v i r tua l   d i sp lacements  

6 u , then - 

Ti i s  the  increment of body fo rce   pe r   un i t  

sys tem  of   the   in i t ia l   conf igura t ion .   S ince   the  

6 u and 6 u (See  Figure I. 1) a r e   t h e  same as 1 2 - - 

i n  which u denote the  components  of t h e  increment of displacement 
- 
i 

between configurat ions 1, and 2 expressed  in   the  coordinate   system of 

the i n i t i a l   c o n f i g u r a t i o n .  

Subtract ion  of  ( C . l )  from ( C . 2 )  and the subs t i tu t ion   o f  ( B . 4 ) ,   ( C . 3 ) ,  

V a v 

It w a s  shown in   chapter  1 that fo r   hype re l a s t i c  materials 

s -  
- - aA 

i k  - '0 1 ' 
a 'ki 

and 

2- 
- 

s = P  - 
i k  o atki 

aA 

Subs t i t u t ion   o f   t hese   cons t i t u t ive   equa t ions   i n  ( C . 5 )  gives 

I f r 

V 
- - 

a V 
- 
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vhich i s  an  incremental  expression of v i r t u a l  work fo r  e l a s t i c  materials. 
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C.2 The Pr inc ip le   o f   Vi r tua l  Work, Third  Alternat ive 

The v i r tua l   d i sp l acemen t s   i n   s ec t ion  C .1 were t a k e n   t o   b e  6 (  2u) .., 

and 6(  u )  . If instead  of   these  6(u)  i s  used  throughout,   then 

another form  of the   express ion  of v i r t u a l  work can  be  obtained. A s  

1 - - 

i n   s e c t i o n   C . 1 t h e  components  of u are t a k e n   i n  the coordinate  system 

o f   t h e   i n i t i a l   c o n f i g u r a t i o n .  The expression  of   vir tual  work i n  con- 

- 

f igu ra t ion  1 is 

W v = J  Po 1- f k 6 ; , d 7 +  

Subs t i tu t ion   o f  

(c .7)  

in to   t he   s econd   i n t eg ra l  on the right hand s i d e  of ( C . 7 ) ,  and t h e  

appl icat ion  of  Gauss t r ans fo rma t ion   r e su l t s   i n  

The s ta tement   o f   eqni l ibr ium  requi res   tha t  

Therefore, 

V a V 
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The expression of v i r t u a l  work in   con f igu ra t ion  2 can 

i n  t h e  same way 

f 

b e   m i t t e n  

d; (C.13) 

The integrand on t h e   r i g h t  hand s ide   o f  (C.13) can be w r i t t e n  as 

2- 
' i j  'k,j %,i i j  

= (1s + s '.C. 14) 

Subs t i t u t ion  of (C.14) i n t o  (C.13) and then   sub t r ac t ion  of (C.12) 

from (C .13) r e s u l t s  i n  

f f 

Due t o  symmetry of s and , then  1 
i j  ij 

and 

- - 
s z 6 % , i =  s i j  k , j  (c.17) 

1 -   1 -  1- 
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Define 

in  which  nas  the  same  form  as  the  increment  of  Lagrangian 

strain  between  configurations 1 and 2 but  involves  displacement 

- 
‘ij 

(C .18) 

components  which  are  in  the  coordinate  system  of  the  initial  con- 

figuration.  Substitution of (c.181, (C.17), and (c.16) into ((2.15) 
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APPENDIX D 

D.l The  Physical  Components  of  Stress  Tensors 

The  deformation  of a continuum  may  be  expressed  in  Cartesian, 

and  curvilinear  coordinates  by 

zA= z ( z  ) . A i  

and 

respectively  (see  Figures D . l ,  and D. 2 for a two  dimensional  pic- 

ture).  In  Cartesian  coordinates  the  stress  tensor IT can  be 

expressed  in  terms of Cauchy (T ) , Piola  symmetric ( s  . . ) and 

unsymmetric ( TAi ) components  as  follows. 

AB 1 J  

in  which ,i is  the  unit  base  vector, G is  the  convected  base 

vector,  and J is  the  Jacobian  of  transformation ( D . 1 ) .  The  con- 

vected  base  vectors  can  be  written  as 

aR aR az. 

Substitution  of ( D . 4 )  into ( D . 3 )  results  in 

T = J-l ZA,i sij ZB,j = J-l TAk ZB,k AB (D. 5 )  

The  same  relationships  in  curvilinear  coordinates  are 
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FIG. D - 2  
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3R 

3X 

G. = - -  - - E  # I) and 
-1 i -A ,i 

The phys ica l  components of s , and TAk are defined  such  that  i j  

they   t r ans fo rm  to   t he   phys i ca l  components of T~ by  equation ( D . 5 ) .  

I n   f a c t   t h e  stresses i n  ( D . 5 )  

gonal   curvi l inear   coordinates  

are 

axe 

t h e  

and 

the   phys i ca l  components. In ortho- 

phys ica l  components of .rAB and # 
,i 

Subs t i tu t ion   of  ( D . 9 )  and ( D . l O )  i n t o  ( D . 8 )  gives 

= J-l %yk 
* 

By comparison of (D .11) 

and T~ are 

and ( D . 5 )  t h e   p h y s i c a l  components of s i j  

S i i  

and 

( D . 1 2 )  
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APPENDIX E 

The Strain  Displacement  Equations  for Axisymmetric Shel l s  of  Revolution 

The Lagrange s t r a i n   t e n s o r  w i l l  be   subjec ted   to   Ki rchoff ' s  hypo- 

thesis and  and w i l l  be   spec ia l ized   for   ax isymmetr ic   she l l s   o f  

revolut ion.   Since  convected  coordinates   are   convenient   to   use  in  

axisymmetrically  deformed shells of   revolut ion  (see 111.4. ) . This 

type  of  coordinate  system w i l l  be   adopted  throughout   the  der ivat ions.  

The Lagrange s t r a i n   t e n s o r  E between two conf igura t ions   o f   the  
i j  

shell ,  say  configurat ion 1 and 2 in   F igu re  B.1, i s  def ined as 

where  u' is  the displacement  vector  between  the material poin ts  i n  

t he   she l l   space   i n   con f igu ra t ions  1 and  2. The vec to r   u '  can  be 

expressed   in  terms of i t s  s h i f t e d  components  on the  middle   surface 

of   the shel l  space  in   configurat ion 1 as 

- 
- 

u '  = 
a a y '  $ u  * 

where the space  shif ' ters 

and 

LI = det[!~;l (E.5)  

i n  which by axe the  curvatures  of  the  middle  surface at configurat ion 1. a 
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Als 0 

Substitution of (E.2) through (E.6) into (E.1) results  in [60]. 

and 

2E 33 = 2u + (u3,3)2 + ux,3u,3 A Y 

3Y3 

where 

(E.10) 

In  axisymmetric  shells  of  revolution  where  the  deformations  are 

restricted  to  Kirchoff's  hypothesis  the  only  non-zero  components of the 

metric  tensor  of  the  middle  surface  will be 

2 2 
a 11 = a  3a22=r ( E . l l )  
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The corresponding  metr ics   associated w i t h  t he   con t r ava r i an t   base  

vectors  w i l l  be  

all = c1-2 22 -2 , a  = r  . (E.13) 

The components of t h e  second  fundamental form a r e  

b,, = - ~1 4,1 , b22 = -r s i n  4 . 
IJ. 

and the  corresponding 

b =  1 
1 

b: = 

pr inc ip le   curva tures  axe 

bll " 

11 Rs 

b22 1 

22 
' 

"- , and 
a 

" 

a 
- "  

The Chr i s to f f e l  symbols  which a re   def ined  as 

w i l l  become 

1 -  cl,l 1 1 -  '1 rll - c1 , r12 = o , r22 - - - 
2 2 r,l 2 rll = o , r12 = -  , = o . 

rr 

a 2 '  

r 

The space shif'ters which a r e   d i f f e r e n t  from  zero  are 
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In  axisymmetrically deformed s h e l l s  of  revolution E and 12  

will be   equa l   t o   ze ro .  Also i f  Kirchhoff 's   hypothesis is  accepted 

then and E will vanish.   Therefore ,   the   only non zero com- 

ponents  of s t r a i n  are E and E The express ions   for   these  two 

components  of s t r a i n  are obtained from  (E.7) after subs t i t u t ion   o f  

(E.lO) t o   ( ~ . 1 8 )   i n t o   t h i s   e q u a t i o n .  These s t r a i n s  are 

33 

11 22 

X 3 01'1 

S RS 

2 
2En = 2 0  + [ - ul) + - u31 + a 

(E.20) 

Consider the displacement  vector  u '  . Subjec t   to   Ki rchhoff ' s  
.., 

hypothesis it can be w r i t t e n  as (see Figure  E. l )  

(E.21) 

where v i s  the  displacement  vector  of  the middle surface.   Let  J) 

be defined as t h e   d i f f e r e n c e  between t h e  normal u n i t   v e c t o r s  

..,  .., 

w = A  - a  - -3  -3 ' (E.22) 

hence 

u ' = v + x w  3 
..,  .., .., (E.23) 

Also can be expressed   in  terms of i t s  shifted components as 
.-d 
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L MIDDLE SURFACE 

FIG. E-1 

FIG. E - 2  
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u l = u l a  + u  a - (E.25) 
3 

-1 -3 

S imi la r ly ,  

3 3  3 , a n a  u = u  u = v l +  x w1 = v 3 + x  w 3 .  
1 3 

( ~ . 2 6 )  

Subs t i tu t ion  of (E.25)  and ( ~ . 2 6 )   i n t o  (E.19)  and (E.20) gives 

v 1 3 2 
+ [(v3,1 - + x ( w  - -)] 

S 331 Rs 

Let U ? T.J 9 us 9 wn €88 9 ESS denote   the  physical  components of 

v , E , and E respec t ive ly .  Then - aB 

1 1 3 w 
) w n = w  a = w3 

€22 
€08 - - 

& - 11 
¶ E  = -  

r a 2 ss 2 
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. .. . 

Substitution of (E.291,  (E.301, and (E.31) into (E.271, and (E.28) 

gives  the.  strain-displacement  relationships  in  terms'  of  the  physical 

components. 

e w 
S 

w 
S 

- + es(ws,s - -)I 
RS RS 

(E.32) 

w n 1  w 1 
2 s,s 2 n,s 

w 
+ c2 [+ ( w  + -) + - ( w  + -q2 + - ( w  - q 1  

S s,s Rs RS RS 

where 
ee = - (u cos $+  w sin $1 1 

r 

It  can  be  seen  in  Figure (E.2) that  the  components  of  the  rotation 

vector w can  be  written as - 

w = sin w (E.38) 
S 

w = cos w -1 n (E.39) 

When  Kirchhoff's  hypothesis  prevails,  it  is  possible  to  find 

w and w in  terms  of  the  middle  surface  displacements u and w . 
Kirchhoff's  hypothesis  requires  that 

S n 
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E = o  33 , E31 = 0 . (E. 40) 

Subs t i t u t ion   o f   t he ' phys i ca l  components o f   t he   va r i ab le s  i n  (E.8) 

and (E .9)  in   v iev   o f   (E .40)   resu l t s   in   th ree   independent   equa t ions  

1 'n w [-+ w + - 1 + (1 + w n ) ( w  - 0 , 
Rs 

w 
S 

s,s R 
S n,s  

w + 2 w  + w  = o ,  2  2 
n n S 

from  which w , and w can be found. The express ion   for  w n S s '  

and w are n 

1 + e- 
w =  S 

n 1 
(1 + 2es + e: + 

- 1  
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APPENDIX  F 

THE EXERESSLON OF VIRTUAL WORK FOR  AXISY"ETRL€.SHELLS  OF  REVOLUTION - 

Let  the  surface  of  the  shell  in  configuration 1 be  denoted  by  a' 

and  the.displacement  vector  between  the  material  points  in  the  shell  space 

in.configurations 1 and 2 be  called  u'  (see  Figure E . l ) .  Then,  in  the 

absence  of  body  forces,  the  expression  of  virtual  work (A.13) can  be 

written  as 

- 

trdur'  da' = (rik6Tlik + sikkik) dv 
a' V 

(A. 13) 

The  surface  a'  consists of the  outside,  inside  and  edge  surfaces  of  the 

shell  where  tractions  are  specified.  In  vectorial  notation  the  surface 

integral  can  be  written  as 

Consjder  the  integral  over  the  inside  surface  of  che  shell.  For  axi- 

symmetric  shells of revolution 

and  since [60] 

1 
El - 1-ll a1 9 g3  a - - - 

-3 

where pll is  the  space  shifter  defined  in (E.31, then 

Also ,  similar  to  (E.24),  the  displacement  vector u' can  be  written  as - 
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u’ = u a l + u a  3 - 1- 3- 

The r e l a t ionsh ip   be tween   t he   su r f ace   d i f f e ren t i a l   da ’  on t h e   i n s i d e  

sur face  and the   su r f ace   d i f f e renc ia1   da  on the  middle   surface of t h e  

she l l   c an   be   e s t ab l i shed  by no t ing   t ha t  

da‘ = dx  dx 1 2  
81 x E2 Y 

and 

da = a X a dx  dx -1 -2 
1 2  

Then i n  view of (F.3)1 and  (E.5) 

Subst i tut ion  of  (F.41, (F.5) amd (F.8) i n t o   t h e   i n s i d e   s u r f a c e   i n t e g r a l  

o f   (F . l )   r e su l t s   i n  

where 

evaluated a t  x = -h/2, h be ing   t he   t h i ckness   o f   t he   she l l .   I f   t he  

t e n s o r s   i n  (F.9) are expressed i n  terms of their   physic:al  components 

]-h/2 

3 

i n d i c a t e s   t h a t   t h e   v a r i a b l e s   i n s i d e   t h e   b r a c k e t  are 

then 

I (F.  10) 

where the   phys ica l  components are defined as 

tS = Jgll t l  , tn = t 3 

(F .11) 

u = G u l ,  
* * - - 

1 u3 U 3 
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Substitution of .(E.26) , (E.29),  and  (E.30)  in (F.lO) and  a  similar  equa- 

tion  for  the  outside  surface  integral  leads  to 

! t 6u da' = ([ptslF[32 6u + [ptn]2[32 6w 
a  '+air - - 
0 

a 

where,  in  view  af  (111.12)  and  (111.13) , 

6ws = (1-e,) 6x- X6es , 

6wn = - x6x 

Let  us  assume  that 

(F. 12) 

(F. 13) 

(F.14) 

(F. 15) 

then  equation (F. 12)  becomes 

! t bu'  da' = / (es 6u + en 6w + 6 6x) da 
a '+ai I - "  

... 
0 

a 
(F. 16) 

where 

(F. 17) 

In  the  same  manner  the  integral  over  the  edge  surface  in ( F . l )  can  be 

changed  into  an  integral  over  the  edge  contour  of  the  middle  surface. 

/ t 8u'  da' = (ws du + 0 6w + gs 6x)  dc 
a ... ... 
e C 

where 
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h/2 m = (1 + r )  ts d< 
S -h/2 Re 

(F. 19) 

For axisymmetrically  deformed  shells  of  revolution,  under  Kirchhoff's 

hypothesis,  the  volume  integral  in (A.13)  reduces  to 

(F. 20) 

S see be  che  physical  components of T , T , s , 11 22 11 
Let Tsss T e e s  s s s  

s , and q 

rzll and E Then  (F.20)  becomes 

22 
ss' q e e s  'SS, 

be  the  physical  components of qll, q22, 

22 - 

(F.  21) 
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APPENDIX G :  Some Matrices for the Axisymmetric Shells of Revolution 

G.l .  [B] Matrix for a Ring  Element, see Equation (IV.29). 
4x6 - 

- 
0 

sin$ 
r 

0 

s in$ s in@ 

r 2 - 

P 

5" 
sin$ 

-n' @ 2 

n , y  + Esin$sin@ 
2 r 

0 

cos$ 
r 

0 

cos$sin@ 
2 

1: 

n'P 

cos$ 
r 
- 

'@ 

-Y + Scos$sin@ 
r 2 

25n' P 

52 cos$ 
r 

2sn ' @-!J 

where 

1 2 
P = " , u =  , @ =  

n" 
!L(l+nf2) !L2(1+n' 2 ) 312  g2 (l+n' 2 ) 512 ' 

Y =  sinwn'cos$ 
gr(l+n' ) 2 312 
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G . 2 .  [B] Matrix  for a Cap Element,  see  Equation  (IV.29) 
4x6 - 

- 
0 0 0 p(l+n'tanBi)  2S17'P 3S2n P 

0 0 0  1 5cos9  S2cos$ - 
r cos f3 

- - 
1 r r 

0 0 0 @(q'tanB1-n' 2 ) 2517'@-lJ 35(517'W) 

q '-tanB1 
0 0 0  Y +  sin@  -2y + cos$sin@ -3CY + Scos$sin@ 5 5T;2cost? -2 r -2 r 

1 - A 

1 2 I' 

P =  Y l J =  2 3/2 R2 (l+n ' ) R (l+n 1 2, R2(l+Ty ) 
, @ =  2 5/2 ' 

G.3. [4(5)]  Matrix  for a Ring  Element,  see  Equation  (IV.52) 
3x6 

I 1 5 0 0 0 0 
- 

0 0 1 5 E 2  c3 

0 -1 -25 -3c2 

R(l+r1'2) R(l+17'2) R(l+l-l'2) - 

17' 0 
R(1+?Y2) 

G.4. [(#)(&)I Matrix  for a Cap  Element,  see  Equation  (IV.52) 
3x6 

T o  0 -cos+ 5 0 0 

n'-tanB1 
0 -.2 5 -3c2 

R(l+17'2)  R(l+17'2) R(l+TY2)  
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6.5. [GI Matrix  for  a  Ring  Element,  see  Equation (IV.48) 
4x6 

! 0 0 0 0 0 0 

0 Q ' P  0 -P -25P  -3E2P 

0 Q ' P  0 -P -25P -35 P 2 

G.6. [GI Matrix  for  a  Cap  Element,  see  Equation (IV.48) 
4x6 

I o  0 0 0 0 

lo 0 0 P (n -tanB1) -25P 

G.7. [ F ]  Matrix,  see  Equation (IV.36) 
4x4 

For Ring  Element: 

For  Cap  Element: 

where 

1 
P =  

%(1+Q'2) 

0 

0 

0 

0 

0 

0 

0 

0 

, 
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0 

0 

@ 
P 

- -  

0 

0 

0 

@ 
P 

- -  

0 

-35 P 
2 

0 

-35 P 

-35 P 

2 

2 

- 
0 

0 

0 

sin$ 
r 
- 

d 

0 

0 

0 

sin$ 

57 

@ =  Q 
R2 (l+Q' ) 2 512 

" "" " 



G.8. [A] Matrix for a Ring Element, see Equation (IV.57) 
6 x 6  - 
1 0 

0 0 

0 0 

1 0 

sinBicosBi -cos Bi 2 

0 R 0 R 

1 1 0 0 

0 0 1 1 

sinB. cosB . 
R 

2 
-2cos 

R 0 0 d 

0 
- 

0 

0 0 

0 0 

0 0 

1 1 

G.9. [A] Matrix for a Cap  Element, see Equation (IV.57) 
6Xh 

0 0 -cos$ 0 0 

0 0 sin+ 0 0 

0 0 0 0 0 

0 0 -cos+ 1 0 

0 0 sin+ tanBl 1 
cos 2 B2(tanB2-tanB ) 

0 0 0 
1 -2 2 

R - cos B R 2 
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G.10. [A-l] Matrix f o r  a Ring  Element, see Equation (IV.59) 
6x6 

1 

-1 

0 

-tanBi 

2tanBi+tanB 
j 

- ( tanBi+tanB . I  
J 

0 

0 

1 

0 

-3 

2 

0 

0 

0 

-2 (l+tan 2 8,) 

-2 (l+tan 2 6,) 

0 

1 

0 

tadi 

-(2tanBi+tanB 
j 

tanBi+tanB 
j 

0 

0 

0 

0 

3 

-2 

G.ll.  [A-l]  Matrix f o r  a Cap  Element,  see  Equation (IV.59) 
6x6 

0 0 0 

0 0 0 

0 

R(l+tan Bj) 2 

1 0 0 

cos9 0 1 

" 
-2 cos$ 

COSB1 cosB2 -2tanB1-tanB2 

1+* 0 
cosB1  cos6 tanB  +tanB2 

2 1 

0 0 

0 0 

3 2 (l+tan 2 B2) 

-2 -R(l+tan 2 6,) 
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" G.12. [TI Matrix, see Equation (IV.60) 

[Til = 

3x3 

0 

FIG- G-1 
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